Queueing Systems

, Volume 71, Issue 1–2, pp 53–78 | Cite as

Sojourn times in a processor sharing queue with multiple vacations

  • U. Ayesta
  • O. J. Boxma
  • I. M. VerloopEmail author
Open Access


We study an M/G/1 processor sharing queue with multiple vacations. The server only takes a vacation when the system has become empty. If he finds the system still empty upon return, he takes another vacation, and so on. Successive vacations are identically distributed, with a general distribution. When the service requirements are exponentially distributed we determine the sojourn time distribution of an arbitrary customer. We also show how the same approach can be used to determine the sojourn time distribution in an M/M/1-PS queue of a polling model, under the following constraints: the service discipline at that queue is exhaustive service, the service discipline at each of the other queues satisfies a so-called branching property, and the arrival processes at the various queues are independent Poisson processes. For a general service requirement distribution we investigate both the vacation queue and the polling model, restricting ourselves to the mean sojourn time.


Processor sharing Multiple vacations Sojourn time Polling system Exhaustive service 

Mathematics Subject Classification (2000)

60K25 90B22 


  1. 1.
    Avrachenkov, K., Ayesta, U., Brown, P.: Batch arrival processor sharing with application to multilevel processor sharing scheduling. Queueing Syst. 50(4), 459–480 (2005) CrossRefGoogle Scholar
  2. 2.
    Ayesta, U.: A unifying conservation law for single server queues. J. Appl. Probab. 44(4), 1078–1087 (2007) CrossRefGoogle Scholar
  3. 3.
    Baccelli, F., Brémaud, P.: Elements of Queuing Theory: Palm Martingale Calculus and Stochastic Recurrences. Springer, Berlin (2003) Google Scholar
  4. 4.
    Bansal, N.: Analysis of the M/G/1 processor sharing queue with bulk arrivals. Oper. Res. Lett. 31(5), 401–405 (2003) CrossRefGoogle Scholar
  5. 5.
    Bhat, U.N.: An Introduction to Queueing Theory: Modeling and Analysis in Applications. Birkhäuser, Basel (2008) CrossRefGoogle Scholar
  6. 6.
    Borst, S.C.: Polling systems. Ph.D. thesis, Tilburg University (1994) Google Scholar
  7. 7.
    Boxma, O.J., Bruin, J., Fralix, B.H.: Sojourn times in polling systems with various service disciplines. Perform. Eval. 66, 621–639 (2009) CrossRefGoogle Scholar
  8. 8.
    Brumelle, S.L.: On the relation between customer and time average in queues. J. Appl. Probab. 2, 508–520 (1971) CrossRefGoogle Scholar
  9. 9.
    Coffman, E.G., Muntz, R.R., Trotter, H.: Waiting time distributions for processor-sharing systems. J. ACM 17, 123–130 (1970) Google Scholar
  10. 10.
    Cohen, J.W.: The multiple phase service network with generalized processor sharing. Acta Inform. 12, 245–284 (1979) CrossRefGoogle Scholar
  11. 11.
    Cohen, J.W.: The Single Server Queue. North-Holland, Amsterdam (1982) Google Scholar
  12. 12.
    Fayolle, G., Mitrani, I., Iasnogorodski, R.: Sharing a processor among many job classes. J. ACM 27(3), 519–532 (1980) CrossRefGoogle Scholar
  13. 13.
    Fuhrmann, S.W.: Performance analysis of a class of cyclic schedules. Bell Laboratories Technical Memorandum 81-59531-1 (1981) Google Scholar
  14. 14.
    Fuhrmann, S.W., Cooper, R.B.: Stochastic decompositions in the M/G/1 queue with generalized vacations. Oper. Res. 33(5), 1117–1129 (1985) CrossRefGoogle Scholar
  15. 15.
    Kelly, F.P.: Stochastic Networks and Reversibility. Wiley, Chichester (1979) Google Scholar
  16. 16.
    Kim, J., Kim, B.: Concavity of the conditional mean sojourn time in the M/G/1 processor-sharing queue with batch arrivals. Queueing Syst. 58(1), 57–64 (2008) CrossRefGoogle Scholar
  17. 17.
    Kleinrock, L.: Queueing Systems, vol. 2. Wiley, New York (1976) Google Scholar
  18. 18.
    Kleinrock, L., Coffman, E.G.: Distribution of attained service in time-shared computer systems. J. Comput. Syst. Sci. 1, 287–298 (1967) CrossRefGoogle Scholar
  19. 19.
    Kleinrock, L., Muntz, R.R., Rodemich, E.: The processor sharing queueing model for time-shared systems with bulk arrivals. Netw. J. 1(1), 1–13 (1971) CrossRefGoogle Scholar
  20. 20.
    Lam, R.Y.W., Leung, V.C.M., Chan, H.C.B.: Polling-based protocols for packet voice transport over IEEE 802.11 wireless local area networks. IEEE Wirel. Commun. 13, 22–29 (2006) CrossRefGoogle Scholar
  21. 21.
    Miorandi, D., Zanella, A., Pierobon, G.: Performance evaluation of Bluetooth polling schemes: an analytical approach. Mob. Netw. Appl. 9, 63–72 (2004) CrossRefGoogle Scholar
  22. 22.
    Morrison, J.A.: Response-time distribution for a processor sharing system. SIAM J. Appl. Math. 45, 152–167 (1985) CrossRefGoogle Scholar
  23. 23.
    Núñez-Queija, R.: Sojourn times in a processor sharing queue with service interruptions. Queueing Syst. 34, 351–386 (2000) CrossRefGoogle Scholar
  24. 24.
    O’Donovan, T.M.: Direct solutions of M/G/1 processor sharing models. Oper. Res. 22, 1232–1235 (1974) CrossRefGoogle Scholar
  25. 25.
    O’Donovan, T.M.: Distribution of attained service and residual service in general queueing systems. Oper. Res. 22, 570–575 (1974) CrossRefGoogle Scholar
  26. 26.
    Olsen, T.L., van der Mei, R.D.: Periodic polling systems in heavy-traffic: distribution of the delay. J. Appl. Probab. 40, 305–326 (2003) CrossRefGoogle Scholar
  27. 27.
    Osipova, N.: Batch processor sharing with hyper-exponential service time. Oper. Res. Lett. 36(3), 372–376 (2008) CrossRefGoogle Scholar
  28. 28.
    Ott, T.J.: The sojourn time distribution in the M/G/1 queue with processor sharing. J. Appl. Probab. 21, 360–378 (1984) CrossRefGoogle Scholar
  29. 29.
    Resing, J.A.C.: Polling systems and multitype branching processes. Queueing Syst. 13, 409–426 (1993) CrossRefGoogle Scholar
  30. 30.
    Schassberger, R.: A new approach to the M/G/1 processor sharing queue. Adv. Appl. Probab. 16, 202–213 (1984) CrossRefGoogle Scholar
  31. 31.
    Sengupta, B., Jagerman, D.L.: A conditional response time of the M/M/1 processor sharing queue. AT&T Bell Lab. Tech. J. 64, 409–421 (1985) Google Scholar
  32. 32.
    Serfozo, R.: Introduction to Stochastic Networks. Springer, Berlin (1999) Google Scholar
  33. 33.
    Takagi, H.: Queueing Analysis, vol. 1. North-Holland, Amsterdam (1991) Google Scholar
  34. 34.
    Thörisson, H.: Coupling, Stationarity and Regeneration. Springer, Berlin (2000) CrossRefGoogle Scholar
  35. 35.
    Tian, N., Zhang, Z.G.: Vacation Queueing Models: Theory and Applications. Springer, Berlin (2006) Google Scholar
  36. 36.
    van den Berg, J.L., Boxma, O.J.: The M/G/1 queue with processor sharing and its relation to a feedback queue. Queueing Syst. 9, 365–401 (1991) CrossRefGoogle Scholar
  37. 37.
    Wierman, A., Winands, E.M.M., Boxma, O.J.: Scheduling in polling systems. Perform. Eval. 64, 1009–1028 (2007) CrossRefGoogle Scholar
  38. 38.
    Winands, E.M.M.: On polling systems with large setups. Oper. Res. Lett. 35, 584–590 (2007) CrossRefGoogle Scholar
  39. 39.
    Yashkov, S.F.: A derivation of response time distribution for a M/G/1 processor sharing queue. Probl. Control Inf. Theory 12, 133–148 (1983) Google Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.INP, LAASUniversité de ToulouseToulouseFrance
  2. 2.LAAS-CNRSToulouseFrance
  3. 3.EURANDOMEindhovenThe Netherlands
  4. 4.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands
  5. 5.IRIT-CNRSToulouseFrance

Personalised recommendations