Queueing Systems

, 63:131 | Cite as

Flow-level performance and capacity of wireless networks with user mobility

  • Thomas Bonald
  • Sem Borst
  • Nidhi Hegde
  • Matthieu Jonckheere
  • Alexandre Proutiere
Open Access
Article

Abstract

The performance evaluation of wireless networks is severely complicated by the specific features of radio communication, such as highly variable channel conditions, interference issues, and possible hand-offs among base stations. The latter elements have no natural counterparts in wireline scenarios, and create a need for novel performance models that account for the impact of these characteristics on the service rates of users.

Motivated by the above issues, we review several models for characterizing the capacity and evaluating the flow-level performance of wireless networks carrying elastic data transfers. We first examine the flow-level performance and stability of a wide family of so-called α-fair channel-aware scheduling strategies. We establish that these disciplines provide maximum stability, and describe how the special case of the Proportional Fair policy gives rise to a Processor-Sharing model with a state-dependent service rate. Next we turn attention to a network of several base stations with inter-cell interference. We derive both necessary and sufficient stability conditions and construct lower and upper bounds for the flow-level performance measures. Lastly we investigate the impact of user mobility that occurs on a slow timescale and causes possible hand-offs of active sessions. We show that the mobility tends to increase the capacity region, both in the case of globally optimal scheduling and local α-fair scheduling. It is additionally demonstrated that the capacity and user throughput improve with lower values of the fairness index α.

Channel-aware scheduling Flow-level performance Processor sharing Proportional fair allocation Stability Transfer delay User mobility Wireless networks 

Mathematics Subject Classification (2000)

60K25 68M20 90B15 90B18 90B22 

References

  1. 1.
    Agrawal, R., Subramanian, V.: Optimality of certain channel-aware scheduling policies. In: Proc. 40th Annual Allerton Conf. Commun., Control, Comp., pp. 1532–1541 (2002) Google Scholar
  2. 2.
    Andrews, D.M.: Instability of the Proportional Fair scheduling algorithm for HDR. IEEE Trans. Wirel. Commun. 3, 1422–1426 (2004) CrossRefGoogle Scholar
  3. 3.
    Andrews, D.M., Kumaran, K., Ramanan, K., Stolyar, A.L., Vijayakumar, R., Whiting, P.A.: Scheduling in a queueing system with asynchronously varying service rates. Probab. Eng. Inf. Sci. 18, 191–217 (2004) CrossRefGoogle Scholar
  4. 4.
    Andrews, D.M., Qian, L., Stolyar, A.L.: Optimal utility-based throughput allocation subject to throughput constraints. In: Proc. Infocom 2005 (2005) Google Scholar
  5. 5.
    Bender, P., Black, P., Grob, M., Padovani, R., Sindhushayana, N., Viterbi, A.: CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users. IEEE Commun. Mag. 38(7), 70–77 (2000) CrossRefGoogle Scholar
  6. 6.
    Bonald, T.: A score-based opportunistic scheduler for fading radio channels. In: Proc. European Wireless Conf. 2004 (2004) Google Scholar
  7. 7.
    Bonald, T., Borst, S.C., Hegde, N., Proutière, A.: Wireless data performance in multi-cell scenarios. In: Proc. ACM Sigmetrics/Performance 2004, pp. 378–388 (2004) Google Scholar
  8. 8.
    Bonald, T., Borst, S.C., Proutière, A.: How mobility impacts the flow-level performance of wireless data systems. In: Proc. IEEE Infocom 2004 (2004) Google Scholar
  9. 9.
    Bonald, T., Borst, S.C., Proutière, A.: Inter-cell scheduling in wireless data networks. In: Proc. European Wireless Conf. 2005 (2005) Google Scholar
  10. 10.
    Bonald, T., Borst, S.C., Proutière, A.: Inter-cell coordination in wireless data networks. In:. Eur. Trans. Telecommun. 17, 303–312 (2006) CrossRefGoogle Scholar
  11. 11.
    Bonald, T., Massoulié, L.: Impact of fairness on Internet performance. In: Proc. ACM Sigmetrics/Performance 2001, pp. 82–91 (2001) Google Scholar
  12. 12.
    Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing Syst. 53, 65–84 (2003) CrossRefGoogle Scholar
  13. 13.
    Bonald, T., Proutière, A.: Wireless downlink data channels: User performance and cell dimensioning. In: Proc. ACM Mobicom 2003, pp. 339–352 (2003) Google Scholar
  14. 14.
    Bonald, T., Proutière, A.: On performance bounds for the integration of elastic and adaptive streaming flows. In: Proc. ACM Sigmetrics/Performance 2004, pp. 235–245 (2004) Google Scholar
  15. 15.
    Bonald, T., Proutière, A.: Flow-level stability of utility-based allocations for non-convex rate regions. In: Proc. CISS 2006 (2006) Google Scholar
  16. 16.
    Bonald, T., Proutière, A., Régnié, G., Roberts, J.W.: Insensitivity results in statistical bandwidth sharing. In: de Souza, J.M., da Fonseca, N.L.S., de Souza e Silva, E.A. (eds.) Teletraffic Engineering in the Internet Era, Proc. ITC-17. Salvador da Bahia, pp. 125–136. North-Holland, Amsterdam (2001) Google Scholar
  17. 17.
    Borst, S.C.: User-level performance of channel-aware scheduling algorithms in wireless data networks. In: Proc. Infocom 2003 (2003) Google Scholar
  18. 18.
    Borst, S.C.: User-level performance of channel-aware scheduling algorithms in wireless data networks. IEEE/ACM Trans. Netw. 13, 636–647 (2005) CrossRefGoogle Scholar
  19. 19.
    Borst, S.C.: Flow-level performance and user mobility in wireless data networks. Philos. Trans. R. Soc. A 366(1872), 2047–2058 (2008) CrossRefGoogle Scholar
  20. 20.
    Borst, S.C., Hegde, N.: Integration of streaming and elastic traffic in wireless networks. In: Proc. Infocom 2007 (2007) Google Scholar
  21. 21.
    Borst, S.C., Hegde, N., Proutière, A.: Capacity of wireless networks with intra- and inter-cell mobility. In: Proc. Infocom 2006 (2006) Google Scholar
  22. 22.
    Borst, S.C., Hegde, N., Proutière, A.: Mobility-driven scheduling in wireless networks. In: Proc. Infocom 2009 Google Scholar
  23. 23.
    Borst, S.C., Jonckheere, M.: Flow-level stability of channel-aware scheduling-algorithms. In: Proc. WiOpt ’06 (2006) Google Scholar
  24. 24.
    Borst, S.C., Jonckheere, M., Leskelä, L.: Stability of parallel queueing systems with coupled service rates. Discrete Event Dyn. Syst. 18, 447–472 (2008) CrossRefGoogle Scholar
  25. 25.
    Borst, S.C., Whiting, P.A.: Dynamic rate control algorithms for HDR throughput optimization. In: Proc. Infocom 2001, pp. 976–985 (2001) Google Scholar
  26. 26.
    Borst, S.C., Whiting, P.A.: Dynamic channel-sensitive scheduling algorithms for wireless data throughput optimization. IEEE Trans. Veh. Techn. 52, 569–586 (2003) CrossRefGoogle Scholar
  27. 27.
    Chaponniere, E.F., Black, P.J., Holtzman, J.M., Tse, D.N.C.: Transmitter directed code division multiple access system using path diversity to equitably maximize throughput. US Patent 6,449,490 (2002) Google Scholar
  28. 28.
    Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland, Amsterdam (1983) Google Scholar
  29. 29.
    Cohen, J.W.: On a functional relation in three complex variables; three coupled processors. Technical Report 359, Mathematical Institute, University of Utrecht (1984) Google Scholar
  30. 30.
    Cohen, J.W.: The multiple phase service network with generalized processor sharing. Acta Inform. 12, 245–284 (1979) CrossRefGoogle Scholar
  31. 31.
    Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Ann. Appl. Probab. 5, 49–77 (1995) CrossRefGoogle Scholar
  32. 32.
    Delcoigne, F., Proutière, A., Régnié, G.: Modelling integration of streaming and data traffic. Perform. Eval. 55, 185–209 (2004) CrossRefGoogle Scholar
  33. 33.
    Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahr. Verw. Geb. 47, 325–351 (1979) CrossRefGoogle Scholar
  34. 34.
    Georgiadis, L., Neely, M.J., Tassiulas, L.: Resource allocation and cross-layer control in wireless networks. Found. Trends Netw. 1, 1–144 (2006) CrossRefGoogle Scholar
  35. 35.
    Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10, 477–486 (2002) CrossRefGoogle Scholar
  36. 36.
    Hansen, J., Reynolds, C., Zachary, S.: Stability of processor sharing networks with simultaneous resource requirements. J. Appl. Probab. 44, 636–651 (2007) CrossRefGoogle Scholar
  37. 37.
    Jalali, A., Padovani, R., Pankaj, R.: Data throughput of CDMA-HDR a high efficiency–high data rate personal communication wireless system. In: Proc. IEEE VTC 2000 Spring Conf., pp. 1854–1858 (2000) Google Scholar
  38. 38.
    Jonckheere, M., Borst, S.C.: Stability of multi-class queueing systems with state-dependent service rates. In: Proc. ValueTools 2006, Pisa, Italy, October 11–13 (2006) Google Scholar
  39. 39.
    Jonckheere, M.: Stability of two interfering processors with load balancing. In: Proc. ValueTools 2008. Athens, Greece, October 20–24 (2008) Google Scholar
  40. 40.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979) Google Scholar
  41. 41.
    Kelly, F.P., Maulloo, A., Tan, D.: Rate control for communication networks: Shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49, 237–252 (1998) CrossRefGoogle Scholar
  42. 42.
    Key, P.B., Massoulié, L., Bain, A., Kelly, F.P.: Fair Internet traffic integration: network flow models and analysis. Ann. Telecommun. 59, 1338–1352 (2004) Google Scholar
  43. 43.
    Knopp, R., Humblet, P.A.: Information theory and power control in single-cell multi-user communications. In: Proc. ICC ’95 (1995) Google Scholar
  44. 44.
    Kushner, H.J., Whiting, P.A.: Convergence of Proportional-Fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3, 1250–1259 (2004) CrossRefGoogle Scholar
  45. 45.
    Lin, X., Shroff, N.B.: The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE/ACM Trans. Netw. 14, 302–315 (2006) CrossRefGoogle Scholar
  46. 46.
    Lin, X., Shroff, N.B., Srikant, R.: On the connection-level stability of congestion-controlled communication networks. IEEE Trans. Inf. Theory 54, 2317–2338 (2008) CrossRefGoogle Scholar
  47. 47.
    Litjens, R., Roijers, F., van den Berg, J.L., Boucherie, R.J., Fleuren, M.J.: Performance analysis of wireless LAN’s: an integrated packet/flow level approach. In: Charzinski, J., Lehnert, R., Tran Gia, P. (eds.) Providing QoS in Heterogeneous Environments, Proc. ITC-18, Berlin, pp. 931–940. North-Holland, Amsterdam (2003) Google Scholar
  48. 48.
    Liu, X., Chong, E.K.P., Shroff, N.B.: A framework for opportunistic scheduling in wireless networks. Comput. Netw. 41, 451–474 (2003) CrossRefGoogle Scholar
  49. 49.
    Liu, J., Proutière, A., Yi, Y., Chiang, M., Poor, H.V.: Flow-level stability of data networks with non-convex and time-varying rate regions. In: Proc. ACM Sigmetrics 2007, pp. 239–250 (2007) Google Scholar
  50. 50.
    Massoulié, L.: Structural properties of proportional fairness: stability and insensitivity. Ann. Appl. Probab. 17, 809–839 (2007) CrossRefGoogle Scholar
  51. 51.
    Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Berlin (1993) Google Scholar
  52. 52.
    Mo, J., Walrand, J.C.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 8, 556–567 (2000) CrossRefGoogle Scholar
  53. 53.
    Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002) Google Scholar
  54. 54.
    Neely, M.J., Modiano, E., Li, C.-P.: Fairness and optimal stochastic control for heterogeneous networks. In: Proc. Infocom 2005 (2005) Google Scholar
  55. 55.
    Prakash, R., Veeravalli, V.V.: A time-scale separation technique for the analysis of random access systems with incremental redundancy. In: Proc. ISIT 2002 (2002) Google Scholar
  56. 56.
    Simatos, F., Tibi, D.: Spatial homogenization in a stochastic network with mobility. Ann. Appl. Probab. (to appear). http://arxiv.org/abs/0807.1205
  57. 57.
    Stolyar, A.L.: On the asymptotic optimality of the gradient scheduling algorithm for multi-user throughput allocation. Oper. Res. 53, 12–25 (2005) CrossRefGoogle Scholar
  58. 58.
    Szpankowski, W.: Stability conditions for multidimensional queueing systems with computer applications. Oper. Res. 36, 944–957 (1988) CrossRefGoogle Scholar
  59. 59.
    Szpankowski, W.: Stability conditions for some distributed systems: buffered random access systems. Adv. Appl. Probab. 26, 498–515 (1994) CrossRefGoogle Scholar
  60. 60.
    Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Automat. Contr. 37, 1936–1948 (1992) CrossRefGoogle Scholar
  61. 61.
    Tassiulas, L., Ephremides, A.: Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Trans. Inf. Theory 30, 466–478 (1993) CrossRefGoogle Scholar
  62. 62.
    Tchen, A.H.: Inequalities for distributions with given marginals. Ann. Appl. Probab. 8, 812–827 (1980) Google Scholar
  63. 63.
    Telatar, I.E., Gallager, R.G.: Combining queueing theory with information theory for multi-access. IEEE J. Sel. Areas Commun. 13, 963–969 (1995) CrossRefGoogle Scholar
  64. 64.
    Viswanath, P., Tse, D.N.C., Laroia, R.: Opportunistic beam-forming using dumb antennas. IEEE Trans. Inf. Theory 48, 1277–1294 (2002) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Thomas Bonald
    • 1
  • Sem Borst
    • 2
    • 3
  • Nidhi Hegde
    • 1
  • Matthieu Jonckheere
    • 3
  • Alexandre Proutiere
    • 4
  1. 1.Orange LabsParisFrance
  2. 2.Bell Labs, Alcatel-LucentMurray HillUSA
  3. 3.Department of Mathematics & Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Microsoft ResearchCambridgeEngland

Personalised recommendations