Queueing Systems

, 63:241 | Cite as

On the speed of convergence to stationarity of the Erlang loss system

  • Erik A. van Doorn
  • Alexander I. Zeifman
Open Access


We consider the Erlang loss system, characterized by N servers, Poisson arrivals and exponential service times, and allow the arrival rate to be a function of N. We discuss representations and bounds for the rate of convergence to stationarity of the number of customers in the system, and display some bounds for the total variation distance between the time-dependent and stationary distributions. We also pay attention to time-dependent rates.


Charlier polynomials Rate of convergence Total variation distance 

Mathematics Subject Classification (2000)

60K25 90B22 


  1. 1.
    Beneš, V.E.: The covariance function of a simple trunk group with applications to traffic measurement. Bell Syst. Tech. J. 40, 117–148 (1961) Google Scholar
  2. 2.
    Blanc, J.P.C., van Doorn, E.A.: Relaxation times for queueing systems. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Mathematics and Computer Science, Proceedings of the CWI symposium, 1983. CWI Monograph, vol. 1, pp. 139–162. North-Holland, Amsterdam (1986) Google Scholar
  3. 3.
    Chen, M.F.: Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci. China Ser. A 44, 409–418 (2001) CrossRefGoogle Scholar
  4. 4.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon & Breach, New York (1978) Google Scholar
  5. 5.
    Erlang, A.K.: Løsning af nogle problemer fra sandsynlighedsregningen af betydning for de automatiske telefoncentraler. Elektroteknikeren 13, 5–13 (1917). (Translation: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. In: E. Brockmeyer, H.L. Halstrøm, A. Jensen (eds.). The Life and Works of A.K. Erlang. Transactions of the Danish Academy of Technical Sciences, No. 2, pp. 138–155. Copenhagen (1948)) Google Scholar
  6. 6.
    Fricker, C., Robert, P., Tibi, D.: On the rates of convergence of Erlang’s model. J. Appl. Probab. 36, 1167–1184 (1999) CrossRefGoogle Scholar
  7. 7.
    Granovsky, B.L., Zeifman, A.I.: Nonstationary queues: estimation of the rate of convergence. Queueing Syst. 46, 363–388 (2004) CrossRefGoogle Scholar
  8. 8.
    Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29, 567–588 (1981) CrossRefGoogle Scholar
  9. 9.
    Ismail, M.E.H., Li, X.: Bound on the extreme zeros of orthogonal polynomials. Proc. Am. Math. Soc. 115, 131–140 (1992) CrossRefGoogle Scholar
  10. 10.
    Jagerman, D.L.: Nonstationary blocking in telephone traffic. Bell Syst. Tech. J. 54, 625–661 (1975) Google Scholar
  11. 11.
    Karlin, S., McGregor, J.L.: Ehrenfest urn models. J. Appl. Probab. 2, 352–376 (1965) CrossRefGoogle Scholar
  12. 12.
    Kijima, M.: On the largest negative eigenvalue of the infinitesimal generator associated with M/M/n/n queues. Oper. Res. Lett. 9, 59–64 (1990) CrossRefGoogle Scholar
  13. 13.
    Kramer, H.P.: Symmetrizable Markov matrices. Ann. Math. Stat. 30, 149–153 (1959) CrossRefGoogle Scholar
  14. 14.
    Krasikov, I.: Bounds for zeros of the Charlier polynomials. Methods Appl. Anal. 9, 599–610 (2002) Google Scholar
  15. 15.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2001). (Updates available on Google Scholar
  16. 16.
    Riordan, J.: Stochastic Server Systems. Wiley, New York (1962) Google Scholar
  17. 17.
    van Doorn, E.A.: Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx. Theory 51, 254–266 (1987) CrossRefGoogle Scholar
  18. 18.
    van Doorn, E.A., van Foreest, N.D., Zeifman, A.I.: Representations for the extreme zeros of orthogonal polynomials. J. Comput. Appl. Math. (2009, to appear) Google Scholar
  19. 19.
    van Doorn, E.A., Zeifman, A.I., Panfilova, T.L.: Bounds and asymptotics for the rate of convergence of birth-death processes. Theory Probab. Appl. 54, 18–38 (2009) (Russian edition) Google Scholar
  20. 20.
    Voit, M.: A note on the rate of convergence to equilibrium for Erlang’s model in the subcritical case. J. Appl. Probab. 37, 918–923 (2000) CrossRefGoogle Scholar
  21. 21.
    Xie, S., Knessl, C.: On the transient behavior of the Erlang loss model: heavy usage asymptotics. SIAM J. Appl. Math. 53, 555–599 (1993) CrossRefGoogle Scholar
  22. 22.
    Zeifman, A.I.: Some estimates of the rate of convergence for birth and death processes. J. Appl. Probab. 28, 268–277 (1991) CrossRefGoogle Scholar
  23. 23.
    Zeifman, A.I.: Upper and lower bounds on the rate of convergence for non-homogeneous birth and death processes. Stoch. Process. Appl. 59, 157–173 (1995) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Institute of Informatics Problems RAS, VSCC CEMI RASand Vologda State Pedagogical UniversityVologdaRussia

Personalised recommendations