Queueing Systems

, 59:53 | Cite as

On Kelly networks with shuffling



We consider Kelly networks with shuffling of customers within each queue. Specifically, each arrival, departure or movement of a customer from one queue to another triggers a shuffle of the other customers at each queue. The shuffle distribution may depend on the network state and on the customer that triggers the shuffle. We prove that the stationary distribution of the network state remains the same as without shuffling. In particular, Kelly networks with shuffling have the product form. Moreover, the insensitivity property is preserved for symmetric queues.


Product form Insensitivity Symmetric queues Shuffling 

Mathematics Subject Classification (2000)



  1. 1.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed and mixed networks of queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248–260 (1975) Google Scholar
  2. 2.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1987) Google Scholar
  3. 3.
    Boucherie, R., van Dijk, N.: Product forms for queueing networks with state dependent multiple job transitions. Adv. Appl. Probab. 23, 152–187 (1991) CrossRefGoogle Scholar
  4. 4.
    Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks, Customers, Signals and Product Form Solutions. Wiley, New York (1999) Google Scholar
  5. 5.
    Daduna, H.: Stochastic networks with product form equilibrium. In: Shanbhag, D.N., Rao, C.R. (eds.) Stochastic Processes: Theory and Methods, pp. 309–364. Elsevier, Amsterdam (2001) Google Scholar
  6. 6.
    Daduna, H.: Queueing Networks with Discrete Time Scale: Explicit Expressions for the Steady State Behavior of Discrete Time Stochastic Networks. Lecture Notes in Computer Science, vol. 2046. Springer, Berlin (2001) Google Scholar
  7. 7.
    Daduna, H., Schassberger, R.: Networks of queues in discrete time. Z. Oper. Res. 27, 159–175 (1983) CrossRefGoogle Scholar
  8. 8.
    Fu, M.C., Govil, M.K.: Queueing theory in manufacturing: A review. J. Manuf. Syst. 18, 214–240 (1999) Google Scholar
  9. 9.
    Hordijk, A., Schassberger, S.: Weak convergence of generalized semi-Markov processes. Stoch. Process. Appl. 12, 271–291 (1982) CrossRefGoogle Scholar
  10. 10.
    Hordijk, A., van Dijk, N.: Adjoint processes, job local balance and insensitivity for stochastic networks. Bull: 44 Session Int. Stat. Inst. 50, 776–788 (1982) Google Scholar
  11. 11.
    Jackson, J.R.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957) CrossRefGoogle Scholar
  12. 12.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979) Google Scholar
  13. 13.
    Kleinrock, L.: Queueing Systems, vol. 2. Wiley, New York (1975) Google Scholar
  14. 14.
    Miyazawa, M.: Insensitivity and product-form decomposability of reallocatable GSMP. Adv. Appl. Probab. 25, 415–437 (1993) CrossRefGoogle Scholar
  15. 15.
    Miyazawa, M., Schassberger, S., Schmidt, S.: On the structure of an insensitive generalized semi-Markov process with reallocation and point-process input. Adv. Appl. Probab. 27, 203–225 (1995) CrossRefGoogle Scholar
  16. 16.
    Schassberger, R.: The insensitivity of stationary distributions in networks of queues. Adv. Appl. Probab. 10, 906–912 (1978) CrossRefGoogle Scholar
  17. 17.
    Serfozo, R.F.: Introduction to Stochastic Networks. Springer, Berlin (1999) Google Scholar
  18. 18.
    Yashkov, S.F.: Properties of invariance of probabilistic models of adaptive scheduling in shared use systems. Autom. Control Comput. Sci. 14, 46–51 (1980) Google Scholar
  19. 19.
    Yates, R.D.: High speed round-robin queueing networks. Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1990) Google Scholar
  20. 20.
    Yates, R.D.: Analysis of discrete time queues via the reversed process. Queueing Syst. 18, 107–116 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.France TelecomIssy-les-MoulineauxFrance
  2. 2.École Normale SupérieureParisFrance

Personalised recommendations