Queueing Systems

, Volume 58, Issue 2, pp 121–136 | Cite as

Consecutive customer losses in regular and oscillating MX/G/1/n systems



We derive fast recursions to compute the probability that k or more consecutive customer losses take place during a busy period of a queue, the so called k-CCL probability, for regular and oscillating MX/G/1/n systems.


Consecutive customer losses MX/G/1/n systems Oscillating system Batch arrivals Busy period 

Mathematics Subject Classification (2000)

60K25 90B18 90B22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramov, V.M.: On a property of a refusals stream. J. Appl. Probab. 34(3), 800–805 (1997) CrossRefGoogle Scholar
  2. 2.
    Abramov, V.M.: On losses in M X/GI/1/n queues. J. Appl. Probab. 38(4), 1079–1080 (2001) CrossRefGoogle Scholar
  3. 3.
    Abramov, V.M.: Stochastic inequalities for single-server loss queueing systems. Stoch. Anal. Appl. 24, 1205–1221 (2006) CrossRefGoogle Scholar
  4. 4.
    Bahary, E., Kolesar, P.: Multilevel bulk service queues. Oper. Res. 20, 406–420 (1972) Google Scholar
  5. 5.
    Bratiychuk, M., Chydzinski, A.: On the ergodic distribution of oscillating queueing systems. J. Appl. Math. Stoch. Anal. 16(4), 311–326 (2003) CrossRefGoogle Scholar
  6. 6.
    Choi, B.D., Choi, D.I.: Queueing system with queue length dependent service times and its application to cell discarding scheme in ATM networks. IEEE Proc. Commun. 143(1), 5–11 (1996) CrossRefGoogle Scholar
  7. 7.
    Choi, D.I., Knessl, C., Tier, C.: A queueing system with queue length dependent service times, with applications to cell discarding in ATM networks. J. Appl. Math. Stoch. Anal. 12(1), 35–62 (1999) CrossRefGoogle Scholar
  8. 8.
    Chydzinski, A.: The M/G-G/1 oscillating queueing system. Queueing Syst. 42(3), 255–268 (2002) CrossRefGoogle Scholar
  9. 9.
    Chydzinski, A.: On the remaining service time upon reaching a given level in M/G/1 queues. Queueing Syst. 47(1–2), 71–80 (2004) CrossRefGoogle Scholar
  10. 10.
    Chydzinski, A.: The oscillating queue with finite buffer. Perform. Eval. 57(3), 341–355 (2004) CrossRefGoogle Scholar
  11. 11.
    Chydzinski, A.: On the distribution of consecutive losses in a finite capacity queue. WSEAS Trans. Circuits Syst. 4(3), 117–124 (2005) Google Scholar
  12. 12.
    Cidon, I., Khamisy, A., Sidi, M.: Analysis of packet loss processes in high-speed networks. IEEE Trans. Inform. Theor. 39(1), 98–108 (1993) CrossRefGoogle Scholar
  13. 13.
    de Boer, P.-T.: Analysis and efficient simulation of queueing models of telecommunication systems. PhD thesis, Centre for Telematics and Information Technology, University of Twente, The Netherlands (2000) Google Scholar
  14. 14.
    de Boer, P.-T., Nicola, V.F.: Hybrid importance sampling estimation of consecutive cell loss probability. AEÜ Int. J. Electron. Commun. 52(3), 133–140 (1998) Google Scholar
  15. 15.
    de Boer, P.-T., Nicola, V.F., van Ommeren, J.C.W.: The remaining service time upon reaching a high level in M/G/1 queues. Queueing Syst. 39(1), 55–78 (2001) CrossRefGoogle Scholar
  16. 16.
    Fakinos, D., Economou, A.: A new approach for the study of the M X/G/1 queue using renewal arguments. Stoch. Anal. Appl. 19, 151–156 (2001) CrossRefGoogle Scholar
  17. 17.
    Federgruen, A., Tijms, H.C.: Computation of the stationary distribution of the queue size in an M/G/1 queueing system with variable service rate. J. Appl. Probab. 17(2), 515–522 (1980) CrossRefGoogle Scholar
  18. 18.
    Harris, T.J.: The remaining busy period of a finite queue. Oper. Res. 19, 219–223 (1971) Google Scholar
  19. 19.
    Kant, L., Sanders, W.H.: Loss process analysis of the knockout switch using stochastic activity networks. In Procs. 4th International Conference on Computer Communications and Networks, Sept. 20–23, 1995, pp. 344–349 (1995) Google Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking CSL until formulae with random time bounds. In: Lecture Notes in Computer Science, vol. 2399, pp. 152–168. Springer, Berlin (2002) Google Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and expected reward formulae with random time bounds. Comput. Math. Appl. 51(2), 305–316 (2006) CrossRefGoogle Scholar
  22. 22.
    Lee, C.W., Andersland, M.S.: Minimizing consecutive packet loss in real-time ATM sessions. In Procs. of Globecom’94, vol. 2, pp. 935–940 (1994) Google Scholar
  23. 23.
    Lee, C.W., Andersland, M.S.: Consecutive cell loss controls for leaky-bucket admission systems. In Procs. of Globecom’96, vol. 3, pp. 1732–1738 (1996) Google Scholar
  24. 24.
    Loris-Teghem, J.: Hysteretic control of an M/G/1 queueing system with two service time distributions and removable server. In: Point Processes and Queuing Problems. Colloq. Math. Soc. János Bolyai, vol. 24, pp. 291–305. North-Holland, Amsterdam (1981) Google Scholar
  25. 25.
    Miller, L.W.: A note on the busy period of an M/G/1 finite queue. Oper. Res. 23(6), 1179–1182 (1975) Google Scholar
  26. 26.
    Pacheco, A., Ribeiro, H.: Algorithms for computing moments of the length of busy periods of single-server systems. WSEAS Trans. Comput. 5(11), 2856–2861 (2006) Google Scholar
  27. 27.
    Pacheco, A., Ribeiro, H.: Consecutive customer loss probabilities in M/G/1/n and GI/M(m)//n systems. In Procs. Workshop on Tools for Solving Structured Markov Chains, Pisa, Italy, October 10, 2006 Google Scholar
  28. 28.
    Pacheco, A., Ribeiro, H.: Moments of the duration of busy periods of M X/G/1/n systems. Probab. Eng. Inf. Sc. (2008, in print) Google Scholar
  29. 29.
    Peköz, E.A.: On the number of refusals in a busy period. Probab. Eng. Inf. Sci. 13(1), 71–74 (1999) CrossRefGoogle Scholar
  30. 30.
    Peköz, E.A., Righter, R., Xia, C.H.: Characterizing losses during busy periods in finite buffer systems. J. Appl. Probab. 40(1), 242–249 (2003) Google Scholar
  31. 31.
    Ribeiro, H.: Customer loss probabilities and other performance measures of regular and oscillating systems. PhD thesis, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal (2007) Google Scholar
  32. 32.
    Righter, R.: A note on losses in M/GI/1/n queues. J. Appl. Probab. 36(4), 1240–1243 (1999) CrossRefGoogle Scholar
  33. 33.
    Sriram, K., McKinney, R.S., Sherif, M.H.: Voice packetization and compression in broadband ATM networks. IEEE J. Select. Areas Commun. 9(3), 294–304 (1991) CrossRefGoogle Scholar
  34. 34.
    Takine, T., Suda, T., Hasegawa, T.: Cell loss and output process analyses of a finite-buffer discrete-time ATM queueing system with correlated arrivals. IEEE Trans. Commun. 43(2-4), 1022–1037 (1995) CrossRefGoogle Scholar
  35. 35.
    Vijaya Laxmi, P.V., Gupta, U.C.: Analysis of finite-buffer multi-server queues with group arrivals: GI X/M/c/N. Queueing Syst. 36(1–3), 125–140 (2000) CrossRefGoogle Scholar
  36. 36.
    Willmot, G.E.: On recursive evaluation of mixed-Poisson probabilities and related quantities. Scand. Actuar. J. 2, 114–133 (1993) Google Scholar
  37. 37.
    Wolff, R.W.: Losses per cycle in a single-server queue. J. Appl. Probab. 39(4), 905–909 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mathematics and CEMAT, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal
  2. 2.Department of Mathematics and CEMAT, Escola Superior de Tecnologia e GestãoPolytechnic Institute of LeiriaLeiriaPortugal

Personalised recommendations