Queueing Systems

, Volume 57, Issue 2–3, pp 61–69 | Cite as

Alternative proof and interpretations for a recent state-dependent importance sampling scheme

  • Pieter-Tjerk de Boer
  • Werner R. W. Scheinhardt


Recently, a state-dependent change of measure for simulating overflows in the two-node tandem queue was proposed by Dupuis et al. (Ann. Appl. Probab. 17(4):1306–1346, 2007), together with a proof of its asymptotic optimality. In the present paper, we present an alternative, shorter and simpler proof. As a side result, we obtain interpretations for several of the quantities involved in the change of measure in terms of likelihood ratios.


Importance sampling Asymptotic optimality Tandem queue 

Mathematics Subject Classification (2000)

60K25 65C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer Series in Statistics—Applied Probability, vol. 7 (1991) Google Scholar
  2. 2.
    Blanc, J.P.C.: The relaxation time of two queueing systems in series. Commun. Stat. Stoch. Models 1, 1–16 (1985) CrossRefGoogle Scholar
  3. 3.
    de Boer, P.T.: Analysis of state-independent IS measures for the two-node tandem queue. ACM Trans. Model. Comput. Simul. 16, 225–250 (2006) CrossRefGoogle Scholar
  4. 4.
    de Boer, P.T., Nicola, V.F.: Adaptive state-dependent importance sampling simulation of Markovian queueing networks. Eur. Trans. Telecommun. 13(4), 303–315 (2002) CrossRefGoogle Scholar
  5. 5.
    Dupuis, P., Sezer, A.D., Wang, H.: Dynamic importance sampling for queueing networks. Ann. Appl. Probab. 17(4), 1306–1346 (2007) CrossRefGoogle Scholar
  6. 6.
    Glasserman, P., Kou, S.G.: Analysis of an importance sampling estimator for tandem queues. ACM Trans. Model. Comput. Simul. 5(1), 22–42 (1995) CrossRefGoogle Scholar
  7. 7.
    Juneja, S.: Importance sampling and the cyclic approach. Oper. Res. 49(6), 900–912 (2001) CrossRefGoogle Scholar
  8. 8.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979) Google Scholar
  9. 9.
    Parekh, S., Walrand, J.: Quick simulation of rare events in networks. IEEE Trans. Autom. Control 34, 54–66 (1989) CrossRefGoogle Scholar
  10. 10.
    Zaburnenko, T.S., Nicola, V.F.: Efficient heuristics for simulating population overflow in tandem networks. In: Ermakov, S.M., Melas, V.B., Pepelyshev, A.N. (eds.) Proceedings of the 5th St. Petersburg Workshop on Simulation (SPWS’05), pp. 755–764. St. Petersburg University Publishers, St. Petersburg (2005) Google Scholar

Copyright information

© The Author(s) 2007

Authors and Affiliations

  • Pieter-Tjerk de Boer
    • 1
  • Werner R. W. Scheinhardt
    • 1
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations