Advertisement

Queueing Systems

, Volume 54, Issue 1, pp 35–44 | Cite as

Mean value analysis for polling systems

  • E. M. M. Winands
  • I. J. B. F. Adan
  • G.J. van Houtum
Article

Abstract

The present paper deals with the problem of calculating mean delays in polling systems with either exhaustive or gated service. We develop a mean value analysis (MVA) to compute these delay figures. The merits of MVA are in its intrinsic simplicity and its intuitively appealing derivation. As a consequence, MVA may be applied, both in an exact and approximate manner, to a large variety of models.

Keywords

Polling systems Mean value analysis Exhaustive service Gated service 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bertsekas, R. Gallager, Data Networks (Prentice-Hall, New Jersey, 1987).Google Scholar
  2. 2.
    O.J. Boxma, Workloads and waiting times in single-server systems with multiple customer classes (Queueing Systems, 5 (1989) 185–214).Google Scholar
  3. 3.
    R.B. Cooper, G. Murray, Queues served in cyclic order (The Bell System Technical Journal, 48 (1969) 675–689).Google Scholar
  4. 4.
    R.B. Cooper, Queues served in cyclic order: waiting times (The Bell System Technical Journal, 49 (1970) 399–413).Google Scholar
  5. 5.
    M. Eisenberg, Queues with periodic service and changeover time (Operations Research, 20 (2)(1972) 440–451).Google Scholar
  6. 6.
    M.J. Ferguson, Y. Aminetzah, Exact results for nonsymmetric token ring systems (IEEE Transactions on Communications, COM-33 (1985) 223–231).Google Scholar
  7. 7.
    P. Franken, D. Koenig, W. Arndt, F. Schmidt, Queues and Point Processes (John Wiley, New York, 1982).Google Scholar
  8. 8.
    S.W. Fuhrmann, Performance analysis of a class of cyclic schedules (Bell Laboratories Technical Memorandum 81-59531-1, 1981).Google Scholar
  9. 9.
    T. Hirayama, S.J. Hong, M. Krunz, A new approach to analysis of polling systems (Queueing Systems, 48 (1-2)(2004) 135–158).CrossRefGoogle Scholar
  10. 10.
    A.G. Konheim, B. Meister, Waiting lines and times in a system with polling (Journal of the Association for Computing Machinery, 21 (3)(1974) 470–490).Google Scholar
  11. 11.
    A.G. Konheim, H. Levy, M.M. Srinivasan, Descendant set: an efficient approach for the analysis of polling systems (IEEE Transactions on Communications, 42 (2/3/4)(1994) 1245–1253).CrossRefGoogle Scholar
  12. 12.
    H. Levy, Delay computation and dynamic behavior of non-symmetric polling systems (Performance Evaluation, 10 (1) (1989) 35–51).CrossRefGoogle Scholar
  13. 13.
    H. Levy, M. Sidi, Polling systems: applications, modeling and optimization (IEEE Transactions on Communications, COM-38 (10)(1990) 1750–1760).CrossRefGoogle Scholar
  14. 14.
    J.D.C. Little, A proof of the queueing formula L = λ W (Operations Research, 9 (1961) 383–387).Google Scholar
  15. 15.
    C. Mack, T. Murphy, N.L. Webb, The efficiency of N machines uni-directionally patrolled by one operative when walking time and repair times are constants (Journal of the Royal Statistical Society Series B, 19 (1)(1957) 166–172).Google Scholar
  16. 16.
    C. Mack, The efficiency of N machines uni-directionally patrolled by one operative when walking time is constant and repair times are variable (Journal of the Royal Statistical Society Series B, 19 (1)(1957) 173–178).Google Scholar
  17. 17.
    J.A.C. Resing, Polling systems and multitype branching processes (Queueing Systems, 13 (1993) 409–426).CrossRefGoogle Scholar
  18. 18.
    I. Rubin, L.F.M. De Moraes, Message delay analysis for polling and token multiple-access schemes for local communication networks (IEEE Journal on Selected Areas in Communications, SAC-l (5)(1983) 935–947).CrossRefGoogle Scholar
  19. 19.
    D. Sarkar, W.I. Zangwill, Expected waiting time for nonsymmetric cyclic queueing systems—exact results and applications (Management Science, 35 (1989) 1463–1474).Google Scholar
  20. 20.
    M.M. Srinivasan, H. Levy, A.G. Konheim, The individual station technique for the analysis of polling systems (Naval Research Logistics, 43 (1)(1996) 79–101).CrossRefGoogle Scholar
  21. 21.
    G.B. Swartz, Polling in a loop system (Journal of the Association for Computing Machinery, 27 (1)(1980) 42–59).Google Scholar
  22. 22.
    H. Takagi, Queueing analysis of polling models: an update (In Stochastic Analysis of Computer and Communication Systems, H. Takagi (ed.), North-Holland, Amsterdam (1990) 267–318).Google Scholar
  23. 23.
    H. Takagi, Queueing analysis of polling models: progress in 1990-1994 (In Frontiers in Queueing: Models, Methods and Problems, J.H. Dshalalow (ed.), CRC Press, Boca Raton (1997) 119–146).Google Scholar
  24. 24.
    H. Takagi, Analysis and application of polling models (In Performance Evaluation: Origins and Directions, G. Haring, C. Lindemann and M. Reiser (eds.), Lecture Notes in Computer Science, vol. 1769, Springer, Berlin (2000) 423–442).Google Scholar
  25. 25.
    R.W. Wolff, Poisson arrivals see time averages (Operations Research, 30 (2) (1982) 223–231).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • E. M. M. Winands
    • 1
  • I. J. B. F. Adan
    • 2
  • G.J. van Houtum
    • 3
  1. 1.Department of Mathematics and Computer Science, Department of Technology ManagementTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands
  3. 3.Department of Technology ManagementTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations