Queueing Systems

, Volume 53, Issue 1–2, pp 65–84 | Cite as

A queueing analysis of max-min fairness, proportional fairness and balanced fairness

  • T. Bonald
  • L. Massoulié
  • A. Proutière
  • J. Virtamo
Article

Abstract

We compare the performance of three usual allocations, namely max-min fairness, proportional fairness and balanced fairness, in a communication network whose resources are shared by a random number of data flows. The model consists of a network of processor-sharing queues. The vector of service rates, which is constrained by some compact, convex capacity set representing the network resources, is a function of the number of customers in each queue. This function determines the way network resources are allocated. We show that this model is representative of a rich class of wired and wireless networks. We give in this general framework the stability condition of max-min fairness, proportional fairness and balanced fairness and compare their performance on a number of toy networks.

Keywords

Resource allocation Flow-level modeling Stability Insensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Armony and N. Bambos, Queueing dynamics and maximal throughput scheduling in switched processing systems, Queueing Systems 44(3) (2003) 209–252.CrossRefGoogle Scholar
  2. 2.
    N. Bambos and G. Michailidis, Queueing and scheduling in random environments, Adv. Appl. Prob. 36 (2004) 293–317.CrossRefGoogle Scholar
  3. 3.
    S. Ben Fredj, T. Bonald, A. Proutière, G. Régnié, and J.W. Roberts, Statistical bandwidth sharing: A study of congestion at flow level, in: Proc of ACM SIGCOMM (2001).Google Scholar
  4. 4.
    A.W. Berger, Y. Kogan, Dimensioning bandwidth for elastic traffic in high-speed data networks, IEEE/ACM Trans. on Networking 8(5) (2000) 643–654.CrossRefGoogle Scholar
  5. 5.
    D. Bertsekas and R. Gallager, Data Networks (Prentice Hall, 1987).Google Scholar
  6. 6.
    T. Bonald, M. Jonckheere, and A. Proutière, Insensitive load balancing, in: Proc. of ACM SIGMETRICS/Performance (2004).Google Scholar
  7. 7.
    T. Bonald and L. Massoulié, Impact of fairness on Internet performance, in: Proc. of ACM SIGMETRICS/Performance (2001).Google Scholar
  8. 8.
    T. Bonald and A. Proutière, Insensitive bandwidth sharing in data networks, Queueing Systems 44(1) (2003) 69–100.CrossRefGoogle Scholar
  9. 9.
    T. Bonald and A. Proutière, On performance bounds for balanced fairness, Performance Evaluation 55 (2004) 25–50.CrossRefGoogle Scholar
  10. 10.
    T. Bonald and A. Proutière, On performance bounds for the integration of elastic and adaptive streaming flows, in: Proc. of ACM SIGMETRICS/Performance (2004).Google Scholar
  11. 11.
    T. Bonald, A. Proutière, J. Roberts, and J. Virtamo, Computational aspects of balanced fairness, in: Proc. of ITC 18 (2003).Google Scholar
  12. 12.
    T. Bonald and J. Virtamo, Calculating the flow level performance of balanced fairness in tree networks, Performance Evaluation 58 (2004) 1–14.CrossRefGoogle Scholar
  13. 13.
    T. Bonald and J. Virtamo, A recursive formula for multirate systems with elastic traffic, IEEE Communications Letters 9 (2005) 753–755.CrossRefGoogle Scholar
  14. 14.
    J. Boyer, F. Guillemin, P. Robert, and B. Zwart, Heavy tailed M/G/1-PS queues with impatience and admission control in packet networks, in: Proc. of Infocom (2003).Google Scholar
  15. 15.
    P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues (Springer, New York, 1999).Google Scholar
  16. 16.
    T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley, 1991).Google Scholar
  17. 17.
    F. Delcoigne, A. Proutière, G. Régnié, Modeling integration of streaming and data traffic, Performance Evaluation 55(3/4) (2004) 185–209.CrossRefGoogle Scholar
  18. 18.
    G. Fayolle, A. de la Fortelle, J.M. Lasgouttes, L. Massoulié, and J.W. Roberts, Best-effort networks: Modeling and performance analysis via large networks asymptotics, in: Proc. of IEEE INFOCOM (2001).Google Scholar
  19. 19.
    G. Fayolle, I. Mitrani, and R. Iasnogorodski, Sharing a processor among many job classes, Journal of the ACM 27 (1980) 519– 532.CrossRefGoogle Scholar
  20. 20.
    D.P. Heyman, T.V. Lakshman, A.L. Neidhardt, A new method for analysing feedback-based protocols with applications to engineering Web traffic over the Internet, in: Proc. of ACM SIGMETRICS (1997).Google Scholar
  21. 21.
    D. Julian, M. Chiang, D. O'Neill, and S. Boyd, QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks, in: Proc. of IEEE INFOCOM, (2002).Google Scholar
  22. 22.
    F.P. Kelly, A. Maulloo, and D. Tan, Rate control for communication networks: Shadow prices, proportional fairness and stability, Journal of the Operat. Res. Society 49 (1998) 237–252.CrossRefGoogle Scholar
  23. 23.
    F.P. Kelly and R.J. Williams, Fluid model for a network operating under a fair bandwidth-sharing policy, Annals of Applied Probability 14 (2004) 1055–1083.CrossRefGoogle Scholar
  24. 24.
    P. Key, L. Massoulié, A. Bain and F. Kelly, A network flow model for mixtures of file transfers and streaming traffic, in: Proc. of ITC 18 (2003).Google Scholar
  25. 25.
    A. Kherani and A. Kumar, Stochastic models for throughput analysis of randomly arriving elastic flows in the Internet, in: Proc. of IEEE INFOCOM (2002).Google Scholar
  26. 26.
    S. Kunniyur and R. Srikant, End-to-end congestion control schemes: Utility functions, random losses and ECN marks, in: Proc. of IEEE INFOCOM (2000).Google Scholar
  27. 27.
    J. Leino and J. Virtamo, Insensitive traffic splitting in data networks, in: Proc. of ITC 19 (2005).Google Scholar
  28. 28.
    X. Liu, E.K.P. Chong, and N.B. Shroff, A framework for opportunistic scheduling in wireless networks, Computer Networks 41(4) (2003) 451–474.CrossRefGoogle Scholar
  29. 29.
    L. Massoulié, Structural properties of proportional fairness: Stability and insensitivity (2005) submitted.Google Scholar
  30. 30.
    L. Massoulié and J.W. Roberts, Arguments in favour of admission control for TCP flows, in: Proc. of ITC 16 (1999).Google Scholar
  31. 31.
    L. Massoulié and J.W. Roberts, Bandwidth sharing and admission control for elastic traffic, Telecommunication Systems 15 (2000) 185–201.CrossRefGoogle Scholar
  32. 32.
    L. Massoulié and J.W. Roberts, Bandwidth sharing: Objectives and algorithms, IEEE/ACM Trans. on Networking 10(3) (2002) 320–328.CrossRefGoogle Scholar
  33. 33.
    J. Mo and J. Walrand, Fair end-to-end window-based congestion control, IEEE/ACM Trans. on Networking 8(5) (2000) 556– 567.CrossRefGoogle Scholar
  34. 34.
    T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan, Achieving MAC layer fairness in wireless packet networks, in: Proc. of ACM MOBICOM (2000).Google Scholar
  35. 35.
    R. Nú nez Queija, J.L. van den Berg, and M.R.H. Mandjes, Performance evaluation of strategies for integration of elastic and stream traffic, in: Proc. of ITC 16 (1999).Google Scholar
  36. 36.
    V. Paxson and S. Floyd, Difficulties in Simulating the Internet, IEEE/ACM Trans. on Networking 9(4) (2001) 392–403.CrossRefGoogle Scholar
  37. 37.
    A. Penttinen and J. Virtamo, Performance of wireless ad hoc networks under balanced fairness, in: Proc. of Networking (2004).Google Scholar
  38. 38.
    B. Radunovic, J.Y. Le Boudec, Rate performance objectives of multihop wireless networks, IEEE Trans. on Mobile Computing 3(4) (2004) 334–349.CrossRefGoogle Scholar
  39. 39.
    J. Rawls, A Theory of Justice (Belknap Press, 1971).Google Scholar
  40. 40.
    J.W. Roberts, A survey on statistical bandwidth sharing, Computer Networks 45 (2004) 319–332.CrossRefGoogle Scholar
  41. 41.
    R.F. Serfozo, Introduction to Stochastic Networks (Springer Verlag, 1999).Google Scholar
  42. 42.
    G.M. Stamatelos and V.N. Koukoulidis, Reservation-based bandwidth allocation in a radio ATM network, IEEE/ACM Trans. on Networking 5(3) (1997) 420–428.CrossRefGoogle Scholar
  43. 43.
    L. Tassiulas and A. Ephremides, Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multi-hop radio networks, IEEE Trans. Aut. Control 37 (1992) 1936–1938.CrossRefGoogle Scholar
  44. 44.
    I.E. Telatar and R.G. Gallager, Combining queueing theory with information theory for multiaccess, IEEE Journal Selected Areas in Comm. 13 (1995) 963–969.CrossRefGoogle Scholar
  45. 45.
    G. de Veciana, T.J. Lee and T. Konstantopoulos, Stability and performance analysis of networks supporting elastic services, IEEE/ACM Trans. on Networking 9(1) (2001) 2–14.CrossRefGoogle Scholar
  46. 46.
    H.Q. Ye, Stability of data networks under an optimization-based bandwidth allocation, IEEE Trans. Aut. Control 48(7) (2003) 1238–1242.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • T. Bonald
    • 1
  • L. Massoulié
    • 2
  • A. Proutière
    • 1
  • J. Virtamo
    • 3
  1. 1.France TelecomFrance
  2. 2.Microsoft ResearchCambridge
  3. 3.Helsinki University of TechnologyFinland

Personalised recommendations