Advertisement

Queueing Systems

, Volume 52, Issue 4, pp 287–304 | Cite as

On the behavior of ECN/RED gateways under a large number of TCP flows: Limit theorems

  • Peerapol Tinnakornsrisuphap
  • Armand M. MakowskiEmail author
Article

Abstract

We consider a discrete-time stochastic model of an ECN/RED gateway where competing TCP sources share the link capacity. As the number of competing flows becomes large, the asymptotic queue behavior (normalized by the number of flows) at the gateway can be described by a simple recursion and the throughput behavior of individual TCP flows becomes asymptotically independent. A Central Limit Theorem complement is also presented, yielding a more accurate characterization of the asymptotic queue size. These results suggest a scalable yet accurate model of this complex large-scale stochastic feedback system, and crisply reveal the sources of queue fluctuations.

Keywords

Limit theorems CLT correction TCP congestion-control RED AQM mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Altman, K. Avrachenkov and C. Barakat, TCP in presence of bursty losses, in: Proceedings of ACM SIGMETRICS 2000, Santa Clara (CA) (June 2000).Google Scholar
  2. 2.
    F. Baccelli, D.R. McDonald and J. Reynier, A mean-field model for multiple TCP connections through a buffer implementing RED, Performance Evaluation 49 (2002) 77–97. (Proceedings of PERFORMANCE 2002, Roma (Italy), September 2002).Google Scholar
  3. 3.
    P. Billingsley, Convergence of Probability Measures. John Wiley & Sons, New York (NY) (1968).Google Scholar
  4. 4.
    S. Deb and R. Srikant, Rate-based versus queue-based models of congestion control, ACM SIGMETRICS Performance Evaluation Review 32 (2004) 246–257. Proceedings of ACM SIGMETRICS 2004, Columbia University, New York (NY) (June 2004).Google Scholar
  5. 5.
    V. Firoiu and M. Borden, A study of active queue management for congestion control, in: Proceedings of IEEE INFOCOM 2000, Tel Aviv (Israel) (March 2000).Google Scholar
  6. 6.
    S. Floyd, TCP and explicit congestion notification, ACM SIGCOMM Computer Communication Review 24 (1994) 8–23.Google Scholar
  7. 7.
    S. Floyd and V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Transactions on Networking 1 (1993) 397–413.Google Scholar
  8. 8.
    C.V. Hollot, V. Misra, D. Towsley and W. Gong, A control-theoretic analysis of RED, in: Proceedings of IEEE INFOCOM 2001, Anchorage (AL) (April 2001).Google Scholar
  9. 9.
    D. Hong and D. Lebedev, Many TCP user asymptotic analysis of the AIMD model, Technical Report RR-4229, INRIA, Rocquencourt (France) (July 2001).Google Scholar
  10. 10.
    V. Jacobson, Congestion avoidance and control, ACM SIGCOMM Computer Communication Review 18 (1988) 314–332. (Proceedings of ACM SIGCOMM 1988, Stanford (CA), August 1988).Google Scholar
  11. 11.
    A.F. Karr, Probability (Springer-Verlag, New York (NY), 1993).Google Scholar
  12. 12.
    F. Kelly, A.K. Maulloo and D.K.H. Tan, Rate control in communication networks: Shadow prices, proportional fairness and stability, Journal of the Operational Research Society 49 (1998) 237–252.Google Scholar
  13. 13.
    S.H. Low, A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking TON-11 (2003) 525–536.Google Scholar
  14. 14.
    M. Mathis, J. Semke, J. Mahdavi and T. Ott, The macroscopic behavior of TCP congestion avoidance algorithm, ACM SIGCOMM Computer Communication Review 27 (1997) 67–82.Google Scholar
  15. 15.
    V. Misra, W. Gong and D. Towsley, Stochastic differential equation modeling and analysis of TCP windowsize behavior, in: Proceedings of Performance 1999 (Istanbul (Turkey), October 1999).Google Scholar
  16. 16.
    UCB/VINT/LBNL Network Simulator (ns) version 2.0. Available at http://www.isi.edu/nsnam.Google Scholar
  17. 17.
    J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modeling TCP Reno performance: A simple model and its empirical validation, IEEE/ACM Transactions on Networking TON-8 (2000) 133–145.Google Scholar
  18. 18.
    G. Raina, D. Towsley and D. Wischik, Part II: Control theory for buffer sizing, ACM SIGCOMM Computer Communication Review 35 (2005) 79–82.Google Scholar
  19. 19.
    S. Shakkottai and R. Srikant, How good are deterministic fluid models of Internet congestion control? in: Proceedings of IEEE INFOCOM 2002 (New York (NY), June 2002).Google Scholar
  20. 20.
    P. Tinnakornsrisuphap and R.J. La, Limiting model of ECN/RED under a large number of heterogeneous TCP flows, in: Proceedings of the Conference on Decision and Control (CDC) 2003, Maui (HI), (December 2003).Google Scholar
  21. 21.
    P. Tinnakornsrisuphap and R.J. La, Characterization of queue fluctuations in probabilistic AQM mechanisms, ACM SIGMETRICS Performance Evaluation Review 32 (2004) 283–294. (Proceedings of ACM SIGMETRICS 2004, Columbia University, New York (NY) June 2004).Google Scholar
  22. 22.
    P. Tinnakornsrisuphap and A.M. Makowski, TCP Traffic Modeling Via Limit Theorems, Technical Report TR-2002-23, Institute for Systems Research, University of Maryland, College Park (MD) (2002).Google Scholar
  23. 23.
    P. Tinnakornsrisuphap and A.M. Makowski, Limit behavior of ECN/RED gateways under a large number of TCP flows, in: Proceedings of IEEE INFOCOM 2003, San Francisco (CA) (April 2003).Google Scholar
  24. 24.
    A.W. van der Vaart, Asymptotic Statistics (Cambridge University Press, Cambridge (U.K), 1998).Google Scholar
  25. 25.
    L. Zhang and D. Clark, Oscillating behavior of network traffic: A case study simulation, Internetworking: Research and Experience 1 (1990) 101–112.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Peerapol Tinnakornsrisuphap
    • 1
  • Armand M. Makowski
    • 2
    Email author
  1. 1.Qualcomm Inc.San Diego
  2. 2.Department of Electrical and Computer Engineering, and Institute for Systems ResearchUniversity of MarylandCollege Park

Personalised recommendations