Advertisement

High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry (HPLC-ESI-MSn) Analysis and Bioactivity Useful for Prevention of “Diabesity” of Allium commutatum Guss

  • Monica R. Loizzo
  • Rosa TundisEmail author
  • Stefania Sut
  • Stefano Dall’Acqua
  • Vincenzo Ilardi
  • Mariarosaria Leporini
  • Tiziana Falco
  • Vincenzo Sicari
  • Maurizio Bruno
Original Paper

Abstract

This study aimed at evaluating and comparing the chemical profile obtained by HPLC-ESI-MSn analysis, the inhibitory activity of enzymes linked to obesity (α-amylase, α-glucosidase, and lipase) and the antioxidant properties (DPPH, ABTS, FRAP, and β-carotene bleaching tests) of ethanol extracts of bulbs (BE) and aerial parts (APE) from Allium commutatum Guss. (known in Italy as “aglio delle isole”). The chemical profile revealed alliin as the main abundant compound with values of 31.5 and 38.8 mg/g extract for BE and APE, respectively. APE is rich also in quercetin (38.5 mg/g extract) and luteolin (31.8 mg/g extract). Bulbs extract exhibited the highest activity as inhibitor of enzymes linked to obesity. Except for DPPH test, APE showed the highest antioxidant potential with IC50 of 7.6 and 56.6 μg/mL in ABTS and β-carotene bleaching test after 60 min of incubation, respectively. In conclusion, the present investigation revealed A. commutatum bulbs and aerial parts as a promising source of inhibitors of enzyme linked to the obesity and of antioxidant compounds.

Keywords

Garlic Aerial parts Bulbs Carbohydrate-hydrolysing enzymes inhibition Lipase inhibition Antioxidant activity 

Abbreviations

APE

Aerial Parts Extract

ABTS

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

BE

Bulbs Extract

BHT

Butylated Hydroxytoluene

DM2

Diabetes Mellitus Type 2

DPPH

2,2-Diphenyl-1Picrylhydrazyl

FRAP

Ferric Reducing Ability Power

GAS

Global Antioxidant Score

HPLC-ESI-MSn

High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry

IC50

Half Maximal Inhibitory Concentration

ROS

Reactive Oxygen Species

SD

Standard Deviation

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Kamenetsky R, Rabinowitch HD (2006) The genus Allium: a developmental and horticultural analysis. Hortic Rev 32:329–378.  https://doi.org/10.1002/9780470767986.ch7 CrossRefGoogle Scholar
  2. 2.
    Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429.  https://doi.org/10.1016/j.foodcont.2014.05.047 CrossRefGoogle Scholar
  3. 3.
    Sharifi-Rad J, Mnayer D, Tabanelli G, Stojanović-Radić ZZ, Sharifi-Rad M, Yousaf Z, Vallone L, Setzer WN, Iriti M (2016) Plants of the genus Allium as antibacterial agents: from tradition to pharmacy. Cell Mol Biol (Noisy-le-grand) 62:57–68Google Scholar
  4. 4.
    Martins N, Petropoulos S, Ferreira IC (2016) Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: a review. Food Chem 211:41–50.  https://doi.org/10.1016/j.foodchem.2016.05.029 CrossRefPubMedGoogle Scholar
  5. 5.
    Hosseini A, Hosseinzadeh H (2015) A review on the effects of Allium sativum (garlic) in metabolic syndrome. J Endocrinol Investig 38:1147–1157.  https://doi.org/10.1007/s40618-015-0313-8 CrossRefGoogle Scholar
  6. 6.
    Besendorfer V, Samardžija M, Zoldoš V, Šolić ME, Papeš D (2002) Chromosomal organization of ribosomal genes and NOR-associated heterochromatin, and NOR activity in some populations of Allium commutatum Guss. (Alliaceae). Botanical J 139:99–108.  https://doi.org/10.1046/j.1095-8339.2002.00047.x CrossRefGoogle Scholar
  7. 7.
    Unuofin JO, Otunola GA, Afolayan AJ (2018) In vitroα-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.). Cogn Heliyon 4:e00810.  https://doi.org/10.1016/j.heliyon.2018.e00810 CrossRefGoogle Scholar
  8. 8.
    Golay A, Ybarra J (2005) Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab 9:649–663.  https://doi.org/10.1016/j.beem.2005.07.010 CrossRefGoogle Scholar
  9. 9.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka T (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Med Inflam article ID 453892, 1–11.  https://doi.org/10.1155/2010/453892 CrossRefGoogle Scholar
  10. 10.
    Garza AL, Milagro FI, Boque N, Campion J, Martínez JA (2011) Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 77:773–785.  https://doi.org/10.1055/s-0030-1270924 CrossRefPubMedGoogle Scholar
  11. 11.
    Tundis R, Loizzo MR, Menichini F (2010) Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Rev Med Chem 10:315–331.  https://doi.org/10.2174/138955710791331007 CrossRefPubMedGoogle Scholar
  12. 12.
    Tundis R, Loizzo MR, Bonesi M, Sicari V, Ursino C, Manfredi I, Conidi C, Figoli A, Cassano A (2018) Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. Plant Foods Hum Nutr 73:336–343.  https://doi.org/10.1007/s11130-018-0686-x CrossRefPubMedGoogle Scholar
  13. 13.
    El-shiekh RA, Al-Mahdy DA, Hifnawy MS, Abdel-Sattar EA (2019) In-vitro screening of selected traditional medicinal plants for their anti-obesity and anti-oxidant activities. South Afr J Bot 123:43–50.  https://doi.org/10.1016/j.sajb.2019.01.022 CrossRefGoogle Scholar
  14. 14.
    Loizzo MR, Lucci P, Núñez O, Tundis R, Balzano M, Frega NG, Conte L, Moret S, Filatova D, Moyano E, Pacetti D (2019) Native colombian fruits and their by-products: phenolic profile, antioxidant activity and hypoglycaemic potential. Foods 8:89–99.  https://doi.org/10.3390/foods8030089 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Todorovic V, Milenkovic M, Vidovic B, Todorovic Z, Sobajic S (2017) Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J. Food Sci 82:1020–1027.  https://doi.org/10.1111/1750-3841.13672 CrossRefGoogle Scholar
  16. 16.
    Liguori L, Califano R, Albanese D, Raimo F, Crescitelli A, Di Matteo M (2017). Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J Food Qual, 2017, Article ID 6873651:1–9.  https://doi.org/10.1155/2017/6873651 CrossRefGoogle Scholar
  17. 17.
    Kim S, Kima DB, Jina W, Parka J, Yoona W, Leea Y, Kima S, Leea S, Kima S, Leeb OH, Shina D, Yooa M (2018) Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat Prod Res 32:1193–1197.  https://doi.org/10.1080/14786419.2017.1323211 CrossRefPubMedGoogle Scholar
  18. 18.
    Ademoyegun OT, Adewuyi GO, Fariyike TA (2010) Effect of heat treatment on antioxidant activity of some spices. Cont J Food Sci Technol 4:53–59Google Scholar
  19. 19.
    Riggi E, Avola G, Siracusa L, Ruberto G (2013) Flavonol content and biometrical traits as a tool for the characterization of "Cipolla di Giarratana": a traditional Sicilian onion landrace. Food Chem 140:810–816.  https://doi.org/10.1016/j.foodchem.2012.10.134 CrossRefPubMedGoogle Scholar
  20. 20.
    Tedesco I, Carbone V, Spagnuolo C, Minasi P, Russo GL (2015) Identification and quantification of flavonoids from two southern italian cultivars of Allium cepa L., Tropea (red onion) and Montoro (copper onion), and their capacity to protect human erythrocytes from oxidative stress. J Agric Food Chem 63:5229–5238.  https://doi.org/10.1021/acs.jafc.5b01206 CrossRefPubMedGoogle Scholar
  21. 21.
    Figueiredo-González M, Martínez-Carballo E, Cancho-Grande B, Santiago JL, Martínez MC, Simal-Gándara J (2012) Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. J Agric Food Chem 130:9–19.  https://doi.org/10.1016/j.foodchem.2011.06.006 CrossRefGoogle Scholar
  22. 22.
    Vukics V, Guttman A (2010) Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev 29:1–16.  https://doi.org/10.1002/mas.20212 CrossRefPubMedGoogle Scholar
  23. 23.
    Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J (2001) Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12:707–715.  https://doi.org/10.1016/S1044-0305(01)00226-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Oboh G, Ademiluyi AO, Agunloye OM, Ademosun AO, Ogunsakin BG (2019) Inhibitory effect of garlic, purple onion, and white onion on key enzymes linked with type 2 diabetes and hypertension. J Diet Suppl 16:105–118.  https://doi.org/10.1080/19390211.2018.1438553 CrossRefPubMedGoogle Scholar
  25. 25.
    Safaeian L, Zolfaghari B, Karimi S, Talebi A, Ghazvini MA (2018) The effects of hydroalcoholic extract of Allium elburzense Wendelbo bulb on dexamethasone-induced dyslipidemia, hyperglycemia, and oxidative stress in rats. Res Pharm Sci 13:22–29.  https://doi.org/10.4103/1735-5362.220964 CrossRefGoogle Scholar
  26. 26.
    Zhai B, Zhang C, Sheng Y, Zhao C, He X, Xu W, Huang K, Luo Y (2018) Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Sci Rep 8:3527.  https://doi.org/10.1038/s41598-018-21421-x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Štajner D, Igić R, Popović BM, Malenčić D (2008) Comparative study of antioxidant properties of wild growing and cultivated Allium species. Phytother Res 22:113–117.  https://doi.org/10.1002/ptr.2278 CrossRefGoogle Scholar
  28. 28.
    Suleria HAR, Butt MS, Anjum FM, Saeed F, Batool R, Ahmad AN (2012) Aqueous garlic extract and its phytochemical profile; special reference to antioxidant status. Int J Food Sci Nutr 63:431–439.  https://doi.org/10.3109/09637486.2011.634786 CrossRefGoogle Scholar
  29. 29.
    Jalalvand AR, Zhaleh M, Goorani S, Zangeneh MM, Seydi N, Zangeneh A, Moradi R (2019) Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of Allium saralicum RM Fritsch leaves rich in linolenic acid, methyl ester. J Photochem Photobiol B 192:103–112.  https://doi.org/10.1016/j.jphotobiol.2019.01.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Monica R. Loizzo
    • 1
  • Rosa Tundis
    • 1
    Email author
  • Stefania Sut
    • 2
  • Stefano Dall’Acqua
    • 3
  • Vincenzo Ilardi
    • 4
  • Mariarosaria Leporini
    • 1
  • Tiziana Falco
    • 1
  • Vincenzo Sicari
    • 5
  • Maurizio Bruno
    • 6
  1. 1.Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRende (CS)Italy
  2. 2.Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e AmbienteUniversity of PadovaPadovaItaly
  3. 3.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
  4. 4.Department of Earth and Marine SciencesUniversity of PalermoPalermoItaly
  5. 5.Department of Agricultural ScienceMediterranean University of Reggio CalabriaReggio CalabriaItaly
  6. 6.Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly

Personalised recommendations