Advertisement

Plant Foods for Human Nutrition

, Volume 74, Issue 2, pp 247–254 | Cite as

Mass Fingerprints of Tomatoes Fertilized with Different Nitrogen Sources Reveal Potential Biomarkers of Organic Farming

  • Adrián García-Casarrubias
  • Robert Winkler
  • Axel TiessenEmail author
Original Paper

Abstract

Direct-injection electron spray ionization mass spectrometry (DIESI-MS) can be used to quantify the whole set of positive and negative ions in complex biological samples. A cherry tomato cultivar was grown inside a greenhouse in soil pots supplemented with different nitrogen sources. Organic cultivation increased fruit dry matter while conventional chemical fertilizers increased yield due to higher water content. While soluble sugars were unaltered, secondary metabolism of tomato fruit was highly sensitive to compost soil supplied to the roots. From a total of ~1647 DIESI-MS signals, 725 revealed significant differences between treatments. Heatmap biclustering showed that ionomic differences were robustly maintained in independent experiments carried out during three consecutive years. The ionomic fingerprints allowed reproducible sample classification, reflecting the effect of organic farming on tomato fruit quality. Specific biomarker ions could be identified for various nitrogen sources. We propose DIESI-MS as an up-front strategy for plant food characterization aiming to identify the ions with the most significant differences across genotypes or agronomic conditions.

Keywords

Food nutrition Organic agriculture Solanum lycopersicum Metabolome Metabolic fingerprint 

Notes

Acknowledgements

This work was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT Mexico) to AGC and ATF. We acknowledge support from the National Laboratory PlanTECC, Problemas Nacionales and Infraestructura. We thank Dr. Andres Estrada Luna for technical support in the lab and the greenhouse.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

11130_2019_726_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1856 kb)

References

  1. 1.
    Martinez-Valverde I, Periago MJ, Provan G, Chesson A (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agric 82:323–330.  https://doi.org/10.1002/jsfa.1035 CrossRefGoogle Scholar
  2. 2.
    Marschner H, Romheld V (1983) In vivo measurement of root-induced PH changes at the soil-root interface - effect of plant-species and nitrogen-source. Zeitschrift Fur Pflanzenphysiologie 111:241–251.  https://doi.org/10.1016/s0044-328x(83)80083-x CrossRefGoogle Scholar
  3. 3.
    Sereme A, Dabire C, Koala M et al (2016) Influence of organic and mineral fertilizers on the antioxidants and total phenolic compounds level in tomato (Solanum lycopersicum) var. Mongal F1. J Exp Biol Agric Sci 4:414–420.  https://doi.org/10.18006/2016.4(4).414.420 Google Scholar
  4. 4.
    Garcia-Flores M, Juarez-Colunga S, Montero-Vargas JM et al (2012) Evaluating the physiological state of maize (Zea mays L.) plants by direct-injection electrospray mass spectrometry (DIESI-MS). Mol BioSyst 8:1658–1660.  https://doi.org/10.1039/c2mb25056j CrossRefGoogle Scholar
  5. 5.
    Beckmann M, Parker D, Enot DP, Duval E, Draper J (2008) High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc 3:486–504.  https://doi.org/10.1038/nprot.2007.500 CrossRefGoogle Scholar
  6. 6.
    Garcia-Flores M, Juarez-Colunga S, Garcia-Casarrubias A et al (2015) Metabolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J Agric Food Chem 63:1042–1052.  https://doi.org/10.1021/jf504853w CrossRefGoogle Scholar
  7. 7.
    Munisamy SM, Chambliss CK, Becker C (2012) Direct infusion electrospray ionization - ion mobility - high resolution mass spectrometry (DIESI-IM-HRMS) for rapid characterization of potential bioprocess streams. J Am Soc Mass Spectrom 23:1250–1259.  https://doi.org/10.1007/s13361-012-0382-2 CrossRefGoogle Scholar
  8. 8.
    Fiehn O, Kopka J, Dormann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRefGoogle Scholar
  9. 9.
    Novotna H, Kmiecik O, Galazka M et al (2012) Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming. Food Addit Contam Part a-Chemistry Anal Control Expo Risk Assess 29:1335–1346.  https://doi.org/10.1080/19440049.2012.690348 CrossRefGoogle Scholar
  10. 10.
    Celik I, Ortas I, Kilic S (2004) Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res 78:59–67.  https://doi.org/10.1016/j.still.2004.02.012 CrossRefGoogle Scholar
  11. 11.
    Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1439–1453.  https://doi.org/10.1093/jxb/erq417 CrossRefGoogle Scholar
  12. 12.
    Baranski M, Srednicka-Tober D, Volakakis N et al (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112:794–811.  https://doi.org/10.1017/s0007114514001366 CrossRefGoogle Scholar
  13. 13.
    Laursen KH, Schjoerring JK, Olesen JE, Askegaard M, Halekoh U, Husted S (2011) Multielemental fingerprinting as a tool for authentication of organic wheat, barley, faba bean, and potato. J Agric Food Chem 59:4385–4396.  https://doi.org/10.1021/jf104928r CrossRefGoogle Scholar
  14. 14.
    Tiessen A, Cubedo-Ruiz EA, Winkler R (2017) Improved representation of biological information by using correlation as distance function for heatmap cluster analysis. Am J Plant Sci 08:502–516.  https://doi.org/10.4236/ajps.2017.83035 CrossRefGoogle Scholar
  15. 15.
    R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  16. 16.
    Klann EM, Chetelat RT, Bennett AB (1993) Expression of acid Invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol 103:863–870CrossRefGoogle Scholar
  17. 17.
    Vallverdu-Queralt A, Lamuela-Raventos RM (2016) Foodomics: a new tool to differentiate between organic and conventional foods. Electrophoresis 37:1784–1794.  https://doi.org/10.1002/elps.201500348 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería GenéticaCINVESTAVIrapuatoMexico
  2. 2.Departamento de Bioquímica y BiotecnologíaCINVESTAVIrapuatoMexico
  3. 3.Mass Spectrometry Group, Beutenberg CampusMax Planck Institute for Chemical EcologyJenaGermany
  4. 4.Laboratorio Nacional PlanTECCCINVESTAVIrapuatoMexico

Personalised recommendations