Nutritional and Antioxidant Properties of Physalis peruviana L. Fruits from the Argentinean Northern Andean Region

  • Mayra S. Bazalar PeredaEmail author
  • Mónica A. Nazareno
  • Carmen I. Viturro
Original Paper


Physalis peruviana L. fruits have gained great interest in different producing countries because they are good source of nutrients and bioactive compounds. However, the nutritional characterization and bioactive properties of both cultivated and wild fruits of P. peruviana growing in Argentina have not been conducted so far. The results provided clear difference in physicochemical, nutritional and bioactive characteristics of cultivated and wild fruits of P. peruviana from Argentinean Northern Andean region. Cultivated fruits showed a higher content of K, Mg and Cu and bioactive compounds as vitamin C than wild fruits. Besides, cultivated fruits displayed a high antiradical activity towards ABTS●+ and FRAP. In addition, both cultivated and wild fruits exhibited a great antioxidant activity measured as the free radical scavenging activity against DPPH (effective concentration that scavenged 50% of the radicals is 0.64 and 1.65 mg/mL, respectively). The findings point out that the nutritional properties and bioactive compounds (vitamin C and β-carotene) of cultivated and wild fruits were comparable to those from countries with a production tradition. Outstandingly, the antioxidant performance of fruits growing in Argentinean Northern Andean region is remarkable in comparison with those reported in other producing zones, which can be ascribed to suitable ecological conditions.


Physalis peruviana Nutrients Mineral content Antioxidant activity 



This study was supported by CONICET-Argentina and CICYT-UNSE. The authors gratefully acknowledge Dr. Silvia Moreno (CONICET-Argentina) for their comments upon manuscript and to Ing. Patricia Arias (UNJu-Argentina) for the soil analyses.

Compliance with Ethical Standards

Conflict of Interest

The authors (Mayra Bazalar Pereda, Mónica Azucena Nazareno and Carmen Inés Viturro) declare that there are no potential conflicts of interest.

Ethics Statements

This article does not contain any studies with human participants or animals performed by any of the authors

Supplementary material

11130_2018_702_MOESM1_ESM.docx (126 kb)
Supplementary Figure 2 (DOCX 125 kb)


  1. 1.
    Trinchero GD, Sozzi GO, Cerri A et al (1999) Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biol Technol 16(2):139–145. CrossRefGoogle Scholar
  2. 2.
    Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M (2011) Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res Int 44(7):1733–1740. CrossRefGoogle Scholar
  3. 3.
    Wu SJ, Chang SP, Lin DL, Wang SS, Hou FF, Ng LT (2009) Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells. Food Chem Toxicol 47(6):1132–1138. CrossRefPubMedGoogle Scholar
  4. 4.
    Gutierrez MS, Trinchero GD, Cerri AM, Vilella F, Sozzi GO (2008) Different responses of goldenberry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Postharvest Biol Technol 48(2):199–205. CrossRefGoogle Scholar
  5. 5.
    Celaya LS, Viturro CI, Silva LR, Moreno S (2016) Natural antioxidants isolated from Schinus areira leaves by ultrasound-assisted extraction. International Journal of Food Studies 5(2):167–179. CrossRefGoogle Scholar
  6. 6.
    Servicio Meteorológico Nacional (2018) Datos Históricos. Web Servicio Meteorológico. Accessed 10 October 2018
  7. 7.
    NASA - National Aeronautics and Space Administration (2018) Multiple data access options. NASA Prediction of Worldwide Energy Resources Web. Accessed 10 October 2018
  8. 8.
    ICONTEC (1999) NTC 4580 Fresh Fruits Cape Gooseberry. Specifications. Bogota: Colombian StandardGoogle Scholar
  9. 9.
    Velasquez HJC, Buitrago OH, Pérez SA (2007) Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Web. Accessed 15 October 2018
  10. 10.
    AOAC (1995) Official methods of analysis. In: Association of Official Analytical Chemists, 16th edn. Arlington, VA, USAGoogle Scholar
  11. 11.
    Coria-Cayupán YS, Ochoa MJ, Nazareno MA (2011) Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem 126(2):514–519. CrossRefGoogle Scholar
  12. 12.
    Coria-Cayupán YS, Sánchez de Pinto MI, Nazareno MA (2009) Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J Agric Food Chem 57(21):10122–10129. CrossRefPubMedGoogle Scholar
  13. 13.
    Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT 28(1):25–30. CrossRefGoogle Scholar
  14. 14.
    Chaillou LL, Nazareno MA (2006) New method to determine antioxidant activity of polyphenols. J Agric Food Chem 54(22):8397–8402. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. CrossRefPubMedGoogle Scholar
  16. 16.
    Berker KI, Güçlü K, Tor İ, Apak R (2007) Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 72(3):1157–1165. CrossRefPubMedGoogle Scholar
  17. 17.
    Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2(4):875–877. CrossRefPubMedGoogle Scholar
  18. 18.
    Makkar HPS (2003) Quantification of tannins in tree and shrub foliage. A laboratory manual. Kluwer Academic Publishers, LondonCrossRefGoogle Scholar
  19. 19.
    Encina Zelada CR, Ureña MO, Repo Carrasco R (2012) Determinación de compuestos bioactivos del aguaymanto (Physalis peruviana, linnaeus, 1753) y de su conserva en almíbar maximizando la retención de ácido ascórbico. ECIPERU. Accessed 3 July 2017
  20. 20.
    Fischer G, Ebert G, Lüdders P (2000) Provitamin a carotenoids, organic acids and ascorbic tropical altitudes. In II ISHS Conference on Fruit Production in the Tropics and Subtropics (531):263–268.
  21. 21.
    Hassanien MFR (2011) Physalis peruviana: a rich source of bioactive phytochemicals for functional foods. Food Rev Int 27(3):259–273. CrossRefGoogle Scholar
  22. 22.
    Roveda G, Peñaranda A et al (2012) Diagnóstico de la fertilidad química de los suelos de los municipios de Granada y Silvania para la producción de uchuva en Cundinamarca. Dialnet Web. Accessed 20 October 2018
  23. 23.
    Joint FAO, WHO (2004) Vitamin and mineral requirements in human nutrition. World Health Organization and Agriculture Organization of the United Nations, GenevaGoogle Scholar
  24. 24.
    WHO (2012) Guideline: potassium intake for adults and children. World Health Organization, GenevaGoogle Scholar
  25. 25.
    Vincente AR, Manganaris GA, Ortiz CM, Sozzi GO, Crisosto CH (2014) Nutritional quality of fruits and vegetables. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (eds) Postharvest Handling, 3rd edn. Academic Press Elsevier, California, pp 69–122CrossRefGoogle Scholar
  26. 26.
    Sivori M, Montaldi M, Caso P (1980) Fisiología Vegetal. Editorial Hemisferio Sur, ArgentinaGoogle Scholar
  27. 27.
    U.S. Department of Agriculture, Agricultural Research Service (2017) Food composition databases page. https://ndbnalusdagov/ndb/nutrients Accessed 17 July 2017
  28. 28.
    Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E (2015) Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in cape gooseberry (Physalis peruviana L.). J Sci Food Agric 95(7):1562–1569. CrossRefPubMedGoogle Scholar
  29. 29.
    Gomes SM, Ghica ME, Rodrigues IA, de Souza Gil E, Oliveira-Brett AM (2016) Flavonoids electrochemical detection in fruit extracts and total antioxidant capacity evaluation. Talanta 154:284–291. CrossRefPubMedGoogle Scholar
  30. 30.
    Chen GL, Chen SG, Zhao YY, Luo CX, Li J, Gao YQ (2014) Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind Crop Prod 57:150–157. CrossRefGoogle Scholar
  31. 31.
    Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Hum Nutr 65(3):299–308. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio PRONOA, Facultad de IngenieríaCIITeD-CONICET- Universidad Nacional de JujuySan Salvador de JujuyArgentina
  2. 2.Laboratorio de Antioxidantes y Procesos Oxidativos - ICQFacultad de Agronomía y Agrondustrias - Universidad Nacional de Santiago del Estero-CONICETSantiago del EsteroArgentina

Personalised recommendations