Advertisement

Analysis of Multifloral Bee Pollen Pellets by Advanced Digital Imaging Applied to Functional Food Ingredients

  • Claudia Y. Salazar-González
  • Francisco J. Rodríguez-Pulido
  • Anass Terrab
  • Consuelo Díaz-Moreno
  • Carlos A. Fuenmayor
  • Francisco J. Heredia
Original Paper

Abstract

Bee pollen is a hive product, resulting from floral pollen agglutination by worker bees and it is characterized by its excellent bioactive and nutritional composition. Currently, research is focused on bee pollen applications on food industry, because this product has been considered an excellent source of compounds for human nutrition. It is also important in some industries, where color and particle size are important characteristics for production. Due to the granular nature of bee pollen, conventional colorimetry does not allow describing color correctly; thus, digital image analysis is a better alternative. This technique could also allow classifying bee pollen according to its appearance beyond the color. Consequently, the aim of this work was to develop a novel methodology for image data processing to classify bee pollen as ingredient in food industry. Seven color groups in samples were established regarding harvest month and particle size. It was possible to calculate the percentage of each color group in all samples. This methodology also allowed selecting each fraction for different applications in food industry using colorimetry, granulometry and the relationship between both of them.

Keywords

Bee pollen Tristimulus colorimetry Image analysis Particle size 

Notes

Acknowledgements

We want to thank “Convocatoria Nacional de Proyectos para el Fortalecimiento de la Investigación, Creación e Innovación 2016-2018” from DIB of Universidad Nacional de Colombia. To Asociación Universitaria Iberoamericana de Posgrado -AUIP- and its program “Becas de Movilidad entre Universidades Andaluzas e Iberoamericanas Convocatoria 2017”. We want to thank Apiario Los Cerezos in Boyacá, Colombia for the material for this research. Finally, we are indebted to the staff of Biology Service (SGI, Universidad de Sevilla) for the technical assistance.

Compliance with Ethical Standards

Conflict of Interest

Authors declare not having any conflict of interest.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Gasparotto JA, Pereira IL, Granato D et al (2015) Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: a screening study. Food Res Int 77, Part 2:82–91.  https://doi.org/10.1016/j.foodres.2015.09.013 CrossRefGoogle Scholar
  2. 2.
    Alvarez-Suarez JM, Giampieri F, Damiani E, Astolfi P, Fattorini D, Regoli F, Quiles JL, Battino M (2012) Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral Cuban honeys. Plant Foods Hum Nutr 67(1):31–38.  https://doi.org/10.1007/s11130-011-0268-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Dżugan M, Sowa P, Kwaśniewska M, Wesołowska M, Czernicka M (2017) Physicochemical parameters and antioxidant activity of bee honey enriched with herbs. Plant Foods Hum Nutr 72(1):74–81.  https://doi.org/10.1007/s11130-016-0593-y CrossRefPubMedGoogle Scholar
  4. 4.
    Fuenmayor C, Zuluaga C, Díaz C, Quicazán M, Cosio M, Mannino S (2014) Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev Fac Med Vet Zootec 19(1):4003–4014. ISBN: 0122-0268Google Scholar
  5. 5.
    Salazar-González C, Díaz-Moreno C (2016) The nutritional and bioactive aptitude of bee pollen for a solid-state fermentation process. J Apic Res 55(2):161–175.  https://doi.org/10.1080/00218839.2016.1205824 CrossRefGoogle Scholar
  6. 6.
    Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Alternat Med. 2015. Article ID 297425:6.  https://doi.org/10.1155/2015/297425, 6CrossRefGoogle Scholar
  7. 7.
    De-Melo AAM, Almeida-Muradian LB (2017) Chemical composition of bee pollen. In: Alvarez-Suarez JM (ed). Bee products - chemical and biological properties, Springer International Publishing, pp 221–259.  https://doi.org/10.1007/978-3-319-59689-1_11 CrossRefGoogle Scholar
  8. 8.
    Kostić AŽ, Barać MB, Stanojević SP, Milojković-Opsenica DM, Tešić ŽL, Šikoparija B, Radišić P, Prentović M, Pešić MB (2015) Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT - Food Sci Technol 62(1), Part 1:301–309.  https://doi.org/10.1016/j.lwt.2015.01.031 CrossRefGoogle Scholar
  9. 9.
    Soares VA, Santos AP, Silva A, Barth OM, Almeida-Muradian LB (2013) Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J Food Compos Anal 29(2):100–105.  https://doi.org/10.1016/j.jfca.2012.11.004 CrossRefGoogle Scholar
  10. 10.
    Terrab A, Escudero ML, González-Miret ML, Heredia FJ (2004) Colour characteristics of honeys as influenced by pollen grain content: a multivariate study. J Sci Food Agric 84(4):380–386.  https://doi.org/10.1002/jsfa.1668 CrossRefGoogle Scholar
  11. 11.
    Zuluaga C, Martínez A, Fernández J, López-Baldó J, Quiles A, Rodrigo D (2016) Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innov Food Sci Emerg Technol 37, Part A:10–17.  https://doi.org/10.1016/j.ifset.2016.07.023 CrossRefGoogle Scholar
  12. 12.
    Rodríguez-Pulido FJ, Gómez-Robledo L, Melgosa M, Gordillo B, González-Miret ML, Heredia FJ (2012) Ripeness estimation of grape berries and seeds by image analysis. Comput Electron Agric 82:128–133.  https://doi.org/10.1016/j.compag.2012.01.004 CrossRefGoogle Scholar
  13. 13.
    Rodríguez-Pulido FJ, González-Miret ML, Heredia FJ (2017) Application of imaging techniques for the evaluation of phenolic maturity of grape seeds. Opt Pura Apl 50(1):1–11.  https://doi.org/10.7149/OPA.50.1.49503 CrossRefGoogle Scholar
  14. 14.
    Chica M, Campoy P (2012) Discernment of bee pollen loads using computer vision and one-class classification techniques. J Food Eng 112(1):50–59.  https://doi.org/10.1016/j.jfoodeng.2012.03.028 CrossRefGoogle Scholar
  15. 15.
    Jiménez AM, Sierra CA, Rodríguez-Pulido FJ, González-Miret ML, Heredia FJ, Osorio C (2011) Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Res Int 44(7):1912–1918.  https://doi.org/10.1016/j.foodres.2010.11.007 CrossRefGoogle Scholar
  16. 16.
    Redondo R, Bueno G, Chung F, Nava R, Víctor Marcos J, Cristóbal G, Rodríguez T, Gonzalez-Porto A, Pardo C, Déniz O, Escalante-Ramírez B (2015) Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Comput Electron Agric 110:56–69.  https://doi.org/10.1016/j.compag.2014.09.020 CrossRefGoogle Scholar
  17. 17.
    Carrión P, Cernadas E, Gálvez JF, Damián M, de Sá-Otero P (2004) Classification of honeybee pollen using a multiscale texture filtering scheme. Mach Vis Appl 15(4):186–193.  https://doi.org/10.1007/s00138-004-0150-9 CrossRefGoogle Scholar
  18. 18.
    Durán A, Quicazán M, Baracaldo CL, Castañeda AM, Niño LF (2013) Caracterización granulométrica y colorimétrica del polen apícola: efecto del procesamiento. ENID:1–7 978-958-761-740-5Google Scholar
  19. 19.
    Erdtman G (1969) Handbook of palynology. Morphology - taxonomy - ecology. An introduction to the study of pollen grain and spores. Hafner Publishing Company, New York.  https://doi.org/10.1002/fedr.19710810815 CrossRefGoogle Scholar
  20. 20.
    Giraldo C, Rodríguez A, Chamorro F et al (2011) Guía ilustrada de pólen y plantas nativas visitadas por abejas. Cundinamarca, Boyacá, Santander, Sucre, Atlántico y Sierra Nevada de Santa Marta, Colombia ISBN: 958-719-983-9Google Scholar
  21. 21.
    Shenoy P, Innings F, Lilliebjelke T, Jonsson C, Fitzpatrick J, Ahrné L (2014) Investigation of the application of digital colour imaging to assess the mixture quality of binary food powder mixes. J Food Eng 128:140–145.  https://doi.org/10.1016/j.jfoodeng.2013.12.013 CrossRefGoogle Scholar
  22. 22.
    Louveaux J, Maurizio A, Vorwohl G (1978) Methods of Melissopalynology. Bee World 59(4):139–157.  https://doi.org/10.1080/0005772X.1978.11097714 CrossRefGoogle Scholar
  23. 23.
    Chamorro FJ, León D, Montoya-Pfeiffer PM, Solarte VM, Nates-Parra G (2017) Botanical origin and geographic differentiation of bee-pollen produced in high mountains from the Colombian eastern Andes. Grana 56(5):386–397.  https://doi.org/10.1080/00173134.2017.1283440 CrossRefGoogle Scholar
  24. 24.
    Modro AFH, Silva IC, Luz CFP, Message D (2009) Analysis of pollen load based on color, physicochemical composition and botanical source. An Acad Bras Cienc 81:281–285. ISBN: 0001-3765CrossRefPubMedGoogle Scholar
  25. 25.
    Morais M, Moreira L, Feás X, Estevinho LM (2011) Honeybee-collected pollen from five Portuguese natural parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem Toxicol 49:1096–1101.  https://doi.org/10.1016/j.fct.2011.01.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Food Science and TechnologyUniversidad Nacional de ColombiaBogotá D.C.Colombia
  2. 2.Department of Chemical and Environmental EngineeringUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Food Color and Quality Laboratory, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
  4. 4.Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain

Personalised recommendations