Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 4, pp 308–313 | Cite as

Anthocyanins of Pithecellobium dulce (Roxb.) Benth. Fruit Associated with High Antioxidant and α-Glucosidase Inhibitory Activities

  • Gabriela López-Angulo
  • Julio Montes-Avila
  • Leticia Sánchez-Ximello
  • Sylvia P. Díaz-Camacho
  • Valentín Miranda-Soto
  • José A. López-Valenzuela
  • Francisco Delgado-VargasEmail author
Original Paper
  • 498 Downloads

Abstract

Red arils of Pithecellobium dulce fruit, commonly known as guamuchil, show high antioxidant (AOx) and α-glucosidase inhibitory (IαG) activities, which have been mainly associated with the content of unknown anthocyanins. In this study, the AOx (i.e., DPPH and ABTS as Trolox equivalents, μmol TE/g) and IαG (as half-maximal inhibitory concentration, IC50, mg/mL) activities of the anthocyanin-rich fraction (ARF) obtained from red arils were contrasted with those of the methanol extract (ME), and the main ARF anthocyanins were characterized by HPLC-DAD-ESI-MS, GC-MS and 1H-NMR. The AOx and IαG values of the ARF (DPPH = 597.8; ABTS = 884.01; IαG = 0.06) were better than those of the ME (DPPH = 41.5; ABTS = 142.3; IαG = 17.5); remarkably, the ARF IαG value was about 42 times lower than that of acarbose. The main anthocyanins in ARF were pelargonidin 3-O-glucoside and cyanidin 3-O-glucoside. Thus, the consumption of red P. dulce arils could provide health benefits for prevention/treatment of chronic degenerative diseases such as diabetes.

Keywords

Pithecellobium dulce Red arils α-Glucosidase inhibition Antioxidant activity Anthocyanin 

Abbreviations

AOx

Antioxidant activity

IαG

α-glucosidase inhibitory

ME

Methanol extract

aME

Acidified methanol extract

ARF

Anthocyanin-rich fraction

C3G

Cyanidin 3-O-glucoside

P3G

Pelargonidin 3-O-glucoside

Notes

Acknowledgements

Authors acknowledge this research was partially funded by CONACYT-Mexico and PROFAPI-Universidad Autonoma de Sinaloa.

Compliance with Ethical Standards

Conflict of Interest

Authors declare they have no conflict of interest.

Supplementary material

11130_2018_693_MOESM1_ESM.jpg (1.1 mb)
ESM 1 (JPG 1126 kb)
11130_2018_693_MOESM2_ESM.jpg (1 mb)
ESM 2 (JPG 1036 kb)
11130_2018_693_MOESM3_ESM.docx (63 kb)
ESM 3 (DOCX 63 kb)
11130_2018_693_MOESM4_ESM.docx (58 kb)
ESM 4 (DOCX 58 kb)

References

  1. 1.
    Parrotta J (1991) Pithecellobium dulce (Roxb.) Benth. Guamúchil, Madras thorn., vol SO-ITS-SM-40. Forest Service, North CarolinaGoogle Scholar
  2. 2.
    UNAM (2009) Biblioteca Digital de la Medicina Tradicional Mexicana. Universidad Nacional Autónoma de México. http://www.medicinatradicionalmexicana.unam.mx/termino.php?l=1&t=diarrea&letra=D&opcion=D&id=2968. Accessed 23 Feb 2018
  3. 3.
    Ponmozhi P, Geethá M, Saravana Kumar M et al (2011) Extraction of anthocyanin and analysing its antioxidant properties from Pithecellobium dulce fruit pericarp. Asian J Pharm Clin Res 4(Suppl. 1):41–45 https://innovareacademics.in/journal/ajpcr/Vol44Suppl41/377.pdf Google Scholar
  4. 4.
    Pío-León JF, Díaz-Camacho S, Montes-Avila J, López-Angulo G, Delgado-Vargas F (2013) Nutritional and nutraceutical characteristics of white and red Pithecellobium dulce (Roxb.) Benth fruits. Fruits 68(5):397–408.  https://doi.org/10.1051/fruits/2013084 CrossRefGoogle Scholar
  5. 5.
    Wall-Medrano A, Gonzalez-Aguilar GA, Loarca-Pina GF et al (2016) Ripening of Pithecellobium dulce (Roxb.) Benth. [guamuchil] fruit: physicochemical, chemical and antioxidant changes. Plant Foods Hum Nutr 71(4):396–401CrossRefGoogle Scholar
  6. 6.
    Andersen ØM, Jordheim M (2006) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids. Chemistry, Biochemistry and Applications, 1st edn. Taylor and Francis Group, New York, pp 471–551.  https://doi.org/10.1201/9781420039443.ch10 CrossRefGoogle Scholar
  7. 7.
    Rodriguez-Saona LE, Wrolstad RE (2001) Extraction, isolation, and purification of anthocyanins. Curr Protoc Food Analyt Chem F1.1.1–F1.1.11.  https://doi.org/10.1002/0471142913.faf0101s00 CrossRefGoogle Scholar
  8. 8.
    Hema A, Palé E, Duez P et al (2012) Two diglucosylated anthocyanins from Combretum paniculatum flowers. Nat Sci 4(3):166–169.  https://doi.org/10.4236/ns.2012.43024 CrossRefGoogle Scholar
  9. 9.
    Tatsuzawa F, Saito N, Yukawa T, Honda T, Shinoda K, Kato K, Miyoshi K (2014) Acylated cyanidin 3,7-diglucosides in the red-purple flowers of Sophronitis wittigiana (Orchidaceae). J Jpn Soc Hortic Sci 83(1):64–71.  https://doi.org/10.2503/jjshs2501.CH-2084 CrossRefGoogle Scholar
  10. 10.
    Qin CG, Li Y, Niu WN, Ding Y, Shang XY, Xu CL (2011) Composition analysis and structural identification of anthocyanins in fruit of waxberry. Czech J Food Sci 29(2):171–180.  https://doi.org/10.17221/17177/12010-CJFS CrossRefGoogle Scholar
  11. 11.
    López-Angulo G, Montes-Avila J, Díaz-Camacho SP, Vega-Aviña R, Báez-Flores ME, Delgado-Vargas F (2016) Bioactive components and antimutagenic and antioxidant activities of two Echeveria DC. species. Ind Crop Prod 85:38–48.  https://doi.org/10.1016/j.indcrop.2016.1002.1044 CrossRefGoogle Scholar
  12. 12.
    Durst RW, Wrolstad RE (2001) Separation and characterization of anthocyanins by HPLC. Curr Protoc Food Analyt Chem F1.3.1–F1.3.13.  https://doi.org/10.1002/0471142913.faf0103s00 CrossRefGoogle Scholar
  13. 13.
    da Silva Pinto M, Kwon Y-I, Apostolidis E, Lajolo FM, Genovese MÍ, Shetty K (2008) Functionality of bioactive compounds in Brazilian strawberry (Fragaria x ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension potential using in vitro models. J Agric Food Chem 56(12):4386–4392CrossRefGoogle Scholar
  14. 14.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1):25–30.  https://doi.org/10.1016/S0023-6438(1095)80008-80005 CrossRefGoogle Scholar
  15. 15.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237CrossRefGoogle Scholar
  16. 16.
    Aguilar O, Hernandez-Brenes C (2015) Use of modified phenolic thyme extracts (Thymus vulgaris) with reduced polyphenol oxidase substrates as anthocyanin color and stability enhancing agents. Molecules 20(12):22422–22434CrossRefGoogle Scholar
  17. 17.
    Jansom C, Bhamarapravati S, Itharat A (2008) Major anthocyanin from ripe berries of Cleistocalyx nervosum var. paniala. Thammasat Med J 8(3):394–370 https://www.researchgate.net/publication/242190711 Google Scholar
  18. 18.
    Cui C, Zhang S, You L, Ren J, Luo W, Chen W, Zhao M (2013) Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem 139(1–4):1–8CrossRefGoogle Scholar
  19. 19.
    Kajdžanoska M, Gjamovski V, Stefova M (2010) HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced J Chem Chem Eng 29(2):181–194 http://www.mjcce.org.mk/index.php/MJCCE/article/view/165 Google Scholar
  20. 20.
    Berardini N, Schieber A, Klaiber I, Beifuss U, Carle R, Conrad J (2005) 7-O-Methylcyanidin 3-O-β-D-galactopyranoside, a novel anthocyanin from mango (Mangifera indica L.) cv. ‘Tommy Atkins’ peels. Z Naturforsch B 60:801–804.  https://doi.org/10.1515/znb-2005-0718 CrossRefGoogle Scholar
  21. 21.
    Lee JH, Kang NS, Shin S-O, Shin SH, Lim SG, Suh DY, Baek IY, Park KY, Ha TJ (2009) Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chem 112(1):226–231.  https://doi.org/10.1016/j.foodchem.2008.1005.1056 CrossRefGoogle Scholar
  22. 22.
    Pérez MJ, Cuello AS, Zampini IC, Ordoñez RM, Alberto MR, Quispe C, Schmeda-Hirschmann G, Isla MI (2014) Polyphenolic compounds and anthocyanin content of Prosopis nigra and Prosopis alba pods flour and their antioxidant and anti-inflammatory capacities. Food Res Int 64:762–771CrossRefGoogle Scholar
  23. 23.
    Rasouli H, Hosseini-Ghazvini SM, Adibi H et al (2017) Differential alpha-amylase/alpha-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct 8(5):1942–1954CrossRefGoogle Scholar
  24. 24.
    Bae IY, An JS, Oh IK, Lee HG (2017) Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility. Food Sci Biotechnol 26(5):1415–1422.  https://doi.org/10.1007/s10068-10017-10188-x CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Adisakwattana S, Charoenlertkul P, Yibchok-Anun S (2009) Alpha-glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzyme Inhib Med Chem 24(1):65–69CrossRefGoogle Scholar
  26. 26.
    Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S et al (2010) Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal alpha-glucosidase and pancreatic alpha-amylase. Int J Mol Sci 11(9):3387–3396CrossRefGoogle Scholar
  27. 27.
    He H, Lu YH (2013) Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against alpha-glucosidase. J Agric Food Chem 61(34):8110–8119CrossRefGoogle Scholar
  28. 28.
    Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) Alpha-glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49(4):1948–1951CrossRefGoogle Scholar
  29. 29.
    Martin Bueno J, Ramos-Escudero F, Sáez-Plaza P et al (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part I: general considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem 42(2):102–125.  https://doi.org/10.1080/10408347.10402011.10632312 CrossRefGoogle Scholar
  30. 30.
    Jakobek L, Šeruga M, Medvidović-Kosanović M et al (2007) Anthocyanin content and antioxidant activity of various red fruit juices. Deut Lebensm-Rundsch 103:58–64 https://bib.irb.hr/datoteka/210741.Jakobek_et_al_DLR_10322007.10322058-10322064.PDF Google Scholar
  31. 31.
    Lee SG, Vance TM, Nam TG, Kim DO, Koo SI, Chun OK (2015) Contribution of anthocyanin composition to total antioxidant capacity of berries. Plant Foods Hum Nutr 70(4):427–432CrossRefGoogle Scholar
  32. 32.
    Delazar A, Khodaie L, Afshar J, Nahar L, Sarker S (2010) Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl. Acta Pharma 60(1):1–11CrossRefGoogle Scholar
  33. 33.
    Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51(3):628–633CrossRefGoogle Scholar
  34. 34.
    Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A (2017) Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu Rev Food Sci Technol 8:155–180CrossRefGoogle Scholar
  35. 35.
    Gowd V, Bao T, Wang L, Huang Y, Chen S, Zheng X, Cui S, Chen W (2018) Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem 269:618–627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gabriela López-Angulo
    • 1
  • Julio Montes-Avila
    • 1
  • Leticia Sánchez-Ximello
    • 1
  • Sylvia P. Díaz-Camacho
    • 2
  • Valentín Miranda-Soto
    • 3
  • José A. López-Valenzuela
    • 1
  • Francisco Delgado-Vargas
    • 1
    Email author
  1. 1.Facultad de Ciencias Químico BiológicasUniversidad Autónoma de SinaloaCuliacanMexico
  2. 2.Unidad de Investigaciones en Ambiente y SaludUniversidad Autónoma de OccidenteLos MochisMexico
  3. 3.Centro de Graduados e InvestigaciónInstituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations