Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 4, pp 302–307 | Cite as

Phenolic Compounds Determined by LC-MS/MS and In Vitro Antioxidant Capacity of Brazilian Fruits in Two Edible Ripening Stages

  • Fabiana Della Betta
  • Priscila Nehring
  • Siluana Katia Tischer Seraglio
  • Mayara Schulz
  • Andressa Camargo Valese
  • Heitor Daguer
  • Luciano Valdemiro Gonzaga
  • Roseane Fett
  • Ana Carolina Oliveira Costa
Original Paper

Abstract

The aim of this study was to investigate the free individual phenolics and the in vitro antioxidant capacity of blackberry, acerola, yellow guava, guabiju, jambolan and jabuticaba fruits in two edible stages. Of the thirty-three phenolics investigated by liquid chromatography - tandem mass spectrometry (LC-MS/MS), twenty-five were quantified and the major ones were catechin, isoquercitrin, epicatechin and gallic acid. The highest values for the total phenolic content (in dry matter) were observed for acerola (83.6 to 97.7 mg gallic acid equivalents g−1 DM) and blackberry (18.9 to 28.3 mg gallic acid equivalents g−1 DM); however, acerola, jabuticaba, and blackberry showed the highest antioxidant capacities (134.6 to 1120.4 mg Trolox equivalents g−1 for 2,2-diphenyl-1-picrylhydrazyl and 43.6 to 501.8 μmol Trolox equivalents g−1 for ferric reducing antioxidant power). For most fruits, the antioxidant capacity decreased during the ripening, possibly due to a decrease in the concentration of most of the phenolics.

Keywords

Brazilian fruits Antioxidant activity Maturation Native and cultivated fruits 

Abbreviations

DM

Dry matter

DPPH

2,2-diphenyl-1-picrylhydrazyl

FRAP

Ferric reducing antioxidant power

LC-MS/MS

Liquid chromatography - tandem mass spectrometry

Notes

Acknowledgments

The authors wish to thank the CNPq, CAPES, FAPESC for the fellowships and financial support, and Cabanha Seraglio for the fruit samples.

Compliance with Ethical Standards

Conflict of Interest

All the authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Supplementary material

11130_2018_690_MOESM1_ESM.docx (64 kb)
ESM 1 (DOCX 64 kb)

References

  1. 1.
    Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55.  https://doi.org/10.1016/j.foodchem.2013.11.093 CrossRefPubMedGoogle Scholar
  2. 2.
    Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70:454–462.  https://doi.org/10.1007/s11130-015-0518-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Dalla Nora C, Danelli D, Souza LF et al (2014) Protective effect of guabiju (Myrcianthes pungens (O. Berg) D. Legrand) and red guava (Psidium cattleyanum Sabine) against cisplatin-induced hypercholesterolemia in rats. Brazilian J Pharm Sci 50:483–491.  https://doi.org/10.1590/S1984-82502014000300006 CrossRefGoogle Scholar
  4. 4.
    Lamas CA, Lenquiste SA, Baseggio AM et al (2018) Jaboticaba extract prevents prediabetes and liver steatosis in high-fat-fed aging mice. J Funct Foods 47:434–446.  https://doi.org/10.1016/j.jff.2018.06.005 CrossRefGoogle Scholar
  5. 5.
    Alvarez-Suarez JM, Giampieri F, Gasparrini M et al (2017) The protective effect of acerola (Malpighia emarginata) against oxidative damage in human dermal fibroblasts through the improvement of antioxidant enzyme activity and mitochondrial functionality. Food Funct 8:3250–3258.  https://doi.org/10.1039/c7fo00859g CrossRefPubMedGoogle Scholar
  6. 6.
    Cardoso JDS, Oliveira PS, Bona NP et al (2018) Communications in free radical research antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep 23:41–46.  https://doi.org/10.1080/13510002.2017.1375709 CrossRefGoogle Scholar
  7. 7.
    Rekha N, Balaji R, Deecaraman M (2008) Effect of aqueous extract of Syzygium cumini pulp on antioxidant defense system in streptozotocin induced diabetic rats. Iran J Pharmacol Ther 7:137–145Google Scholar
  8. 8.
    Hajaji S, Jabri MA, Sifaoui I et al (2017) Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp Parasitol 183:224–230.  https://doi.org/10.1016/j.exppara.2017.09.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542.  https://doi.org/10.1016/j.jpba.2006.04.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Dabbou S, Maatallah S, Castagna A et al (2017) Carotenoids, phenolic profile, mineral content and antioxidant properties in flesh and peel of Prunus persica fruits during two maturation stages. Plant Foods Hum Nutr 72:103–110.  https://doi.org/10.1007/s11130-016-0585-y CrossRefGoogle Scholar
  11. 11.
    Taiz L, Zeiger E (2009) Fisiologia Vegetal, 4th ed. Artmed, Porto AlegreGoogle Scholar
  12. 12.
    Seraglio SKT, Valese AC, Daguer H et al (2016) Development and validation of a LC-ESI-MS/MS method for the determination of phenolic compounds in honeydew honeys with the diluted-and-shoot approach. Food Res Int 87:60–67.  https://doi.org/10.1016/j.foodres.2016.06.019 CrossRefPubMedGoogle Scholar
  13. 13.
    Silva S, Costa EM, Coelho MC et al (2017) Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars. Nat Prod Res 31:93–98.  https://doi.org/10.1080/14786419.2016.1209668 CrossRefPubMedGoogle Scholar
  14. 14.
    Bicudo MOP, Ribani RH, Beta T (2014) Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis M.) along the on-tree ripening process. Plant Foods Hum Nutr 69:142–147.  https://doi.org/10.1007/s11130-014-0406-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Pereira MC, Steffens RS, Jablonski A et al (2012) Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J Agric Food Chem 60:3061–3067.  https://doi.org/10.1021/jf205263f CrossRefPubMedGoogle Scholar
  16. 16.
    Reynertson KA, Yang H, Jiang B et al (2008) Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem 109:883–890.  https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Assis SA, Vellosa JCR, Brunetti IL et al (2009) Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil. Int J Food Sci Nutr 60:439–448.  https://doi.org/10.1080/09637480701780641 CrossRefPubMedGoogle Scholar
  18. 18.
    Abe LT, Lajolo FM, Genovese MI (2012) Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). J Sci Food Agric 92:1679–1687.  https://doi.org/10.1002/jsfa.5531 CrossRefPubMedGoogle Scholar
  19. 19.
    Dalla Nora C, Jablonski A, Rios A de O et al (2014) The characterisation and profile of the bioactive compounds in red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens (O. Berg) D. Legrand). Int J Food Sci Technol 49:1842–1849.  https://doi.org/10.1111/ijfs.12493 CrossRefGoogle Scholar
  20. 20.
    Bataglion GA, Da Silva FMA, Eberlin MN, Koolen HHF (2015) Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem 180:280–287.  https://doi.org/10.1016/j.foodchem.2015.02.059 CrossRefPubMedGoogle Scholar
  21. 21.
    Ribeiro AB, Chisté RC, Freitas M et al (2014) Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species. Food Chem 165:140–148.  https://doi.org/10.1016/j.foodchem.2014.05.079 CrossRefPubMedGoogle Scholar
  22. 22.
    Ramirez MR, Apel MA, Raseira MCB et al (2011) Polyphenol content and evaluation of antichemotactic, antiedematogenic and antioxidant activities of Rubus sp. cultivars. J Food Biochem 35:1389–1397.  https://doi.org/10.1111/j.1745-4514.2010.00457.x CrossRefGoogle Scholar
  23. 23.
    Acosta-Montoya Ó, Vaillant F, Cozzano S et al (2010) Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem 119:1497–1501.  https://doi.org/10.1016/j.foodchem.2009.09.032 CrossRefGoogle Scholar
  24. 24.
    Arena ME, Postemsky P, Curvetto NR (2012) Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. New Zeal J Bot 50:15–28.  https://doi.org/10.1080/0028825X.2011.638644 CrossRefGoogle Scholar
  25. 25.
    Bashir HA, Abu-Goukh ABA (2003) Compositional changes during guava fruit ripening. Food Chem 80:557–563.  https://doi.org/10.1016/S0308-8146(02)00345-X CrossRefGoogle Scholar
  26. 26.
    Schulz M, Borges GDSC, Gonzaga LV et al (2015) Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Res Int 77:125–131.  https://doi.org/10.1016/j.foodres.2015.08.006 CrossRefGoogle Scholar
  27. 27.
    Ghasemnezhad M, Sherafati M, Payvast GA (2011) Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J Funct Foods 3:44–49.  https://doi.org/10.1016/j.jff.2011.02.002 CrossRefGoogle Scholar
  28. 28.
    Mahmood T, Anwar F, Abbas M, Saari N (2012) Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. Int J Mol Sci 13:4591–4607.  https://doi.org/10.3390/ijms13044591 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A et al (2014) Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol Biochem 85:85–95.  https://doi.org/10.1016/j.plaphy.2014.10.015 CrossRefPubMedGoogle Scholar
  30. 30.
    Riebel M, Sabel A, Claus H et al (2017) Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and botrytis-laccase oxidation. Food Chem 229:779–789.  https://doi.org/10.1016/j.foodchem.2017.03.003 CrossRefPubMedGoogle Scholar
  31. 31.
    Luximon-Ramma A, Bahorun T, Crozier A (2003) Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J Sci Food Agric 83:496–502.  https://doi.org/10.1002/jsfa.1365 CrossRefGoogle Scholar
  32. 32.
    Pereira MC, Steffens RS, Jablonski A et al (2012) Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J Agric Food Chem 60:3061–3067.  https://doi.org/10.1021/jf205263f CrossRefPubMedGoogle Scholar
  33. 33.
    Medina AL, Haas LIR, Chaves FC et al (2011) Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chem 128:916–922.  https://doi.org/10.1016/j.foodchem.2011.03.119 CrossRefGoogle Scholar
  34. 34.
    Magalhães LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19.  https://doi.org/10.1016/j.aca.2008.02.047 CrossRefPubMedGoogle Scholar
  35. 35.
    De Oliveira IRN, Teófilo RF, de Oliveira EB et al (2017) Evaluation of potential interfering agents on in vitro methods for the determination of the antioxidant capacity in anthocyanin extracts. Int J Food Sci Technol 52:511–518.  https://doi.org/10.1111/ijfs.13307 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fabiana Della Betta
    • 1
  • Priscila Nehring
    • 1
  • Siluana Katia Tischer Seraglio
    • 1
  • Mayara Schulz
    • 1
  • Andressa Camargo Valese
    • 2
  • Heitor Daguer
    • 2
  • Luciano Valdemiro Gonzaga
    • 1
  • Roseane Fett
    • 1
  • Ana Carolina Oliveira Costa
    • 1
  1. 1.Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisBrazil
  2. 2.National Agricultural Laboratory (SLAV/SC/LANAGRO-RS), Ministry of Agriculture, Livestock and Food SupplySão JoséBrazil

Personalised recommendations