Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 4, pp 278–286 | Cite as

Blueberry Residue Encapsulation by Ionotropic Gelation

  • Luciana Linhares de Azevedo BittencourtEmail author
  • Kelly Alencar Silva
  • Valéria Pereira de Sousa
  • Gizele Cardoso Fontes-Sant’Ana
  • Maria Helena Rocha-Leão
Original Paper
  • 261 Downloads

Abstract

In the processing of fruits such as blueberry (Vaccinium sp), that has high levels of phenolic acid, the food industry produces tons of organic waste that causes harm to the environment. Encapsulation is a technique used to take advantage of these wastes. Several methods are used to encapsulate substances, among them ionotropic gelation proves to be a simple, precise, efficient and economical method for obtaining particles with encapsulated bioactives. In this manner, the aim of this study was to test sodium alginate as wall material to encapsulate blueberry residue by ionotropic gelation. The microbeads were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), total phenolic compounds, antioxidant capacity and in vitro dissolution. The results showed that the microbeads had surface invagination; retention of 67.01% of the phenolic compounds after encapsulation and 68.2%, phenolic release 120 min after in vitro dissolution. The results suggest that the tested matrix was suitable for encapsulation. The produced microbeads are promising for applications in food products, once the phenolic compounds present in the blueberry residues were maintained after encapsulation.

Keywords

Microencapsulation Plant residues Blueberry Food fortification 

Abbreviations

ABTS

2,2′-azino-bis(3-ethylbezothiazoline-6- 6-sulphonic acid)

ANOVA

Analyses of variance

CAPES

Coordination for the improvement of higher education personnel

CCRD

Central composite rotatable design

FDA

Food and drug administration

FRAP

Ferric reducing antioxidant power

GAE

Gallic acid equivalent

ROS

Reactive oxygen species

SEM

Scanning electron microscopy

TEAC

Trolox equivalent antioxidant capacity

USP

United states pharmacopeia

XRD

X - ray diffraction

Notes

Acknowledgments

The authors gratefully acknowledge the institutions: Coordination for the Improvement of Higher Education Personnel (CAPES) and Federal University of Rio de Janeiro for the financial support of the research.

Compliance with Ethical Standards

Conflict of Interest

We declare no conflict of interest.

References

  1. 1.
    Garcia-Garcia G, Woolley E, Rahimifard S (2017) Optimising industrial food waste management. Procedia Manuf 8:432–439.  https://doi.org/10.1016/j.promfg.2017.02.055 CrossRefGoogle Scholar
  2. 2.
    Scherhaufer S, Moates G, Hartikainen H et al (2018) Environmental impacts of food waste in Europe. Waste Manag 77:98–113.  https://doi.org/10.1016/j.wasman.2018.04.038 CrossRefPubMedGoogle Scholar
  3. 3.
    Mallik AU, Hamilton J (2017) Harvest date and storage effect on fruit size, phenolic content and antioxidant capacity of wild blueberries of NW Ontario, Canada. J Food Sci Technol 54:1545–1554.  https://doi.org/10.1007/s13197-017-2586-8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rodrigues E, Poerner N, Rockenbach II et al (2011) Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci Technol 31:911–917.  https://doi.org/10.1590/S0101-20612011000400013 CrossRefGoogle Scholar
  5. 5.
    Kang J, Thakali KM, Jensen GS, Wu X (2015) Phenolic acids of the two major blueberry species in the US market and their antioxidant and anti-inflammatory activities. Plant Foods Hum Nutr 70:56–62.  https://doi.org/10.1007/s11130-014-0461-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhong S, Sandhu A, Edirisinghe I, Burton-Freeman B (2017) Characterization of wild blueberry polyphenols bioavailability and kinetic profile in plasma over 24-h period in human subjects. Mol Nutr Food Res 61:1–45.  https://doi.org/10.1002/mnfr.201700405 CrossRefGoogle Scholar
  7. 7.
    Fang Z (2010) Encapsulation of polyphenols - a review. Trends Food Sci Technol 21:510–523.  https://doi.org/10.1016/j.tifs.2010.08.003 CrossRefGoogle Scholar
  8. 8.
    Li X, Wu Z, He Y et al (2017) Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198. J Biomater Sci Polym Ed 28:1556–1571.  https://doi.org/10.1080/09205063.2017.1335075 CrossRefPubMedGoogle Scholar
  9. 9.
    López-Cacho JM, González-R PL, Talero B et al (2012) Robust optimization of alginate-Carbopol 940 bead formulations. Sci World J 2012:15.  https://doi.org/10.1100/2012/605610 CrossRefGoogle Scholar
  10. 10.
    Araujo-Díaz SB, Leyva-Porras C, Aguirre-Bañuelos P et al (2017) Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr Polym 167:317–325.  https://doi.org/10.1016/j.carbpol.2017.03.065 CrossRefPubMedGoogle Scholar
  11. 11.
    Guo J, Giusti MM, Kaletunç G (2018) Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: impact of processing and storage parameters on encapsulation efficiency. Food Res Int 107:414–422.  https://doi.org/10.1016/j.foodres.2018.02.035 CrossRefPubMedGoogle Scholar
  12. 12.
    Flores FP, Singh RK, Kerr WL et al (2015) In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chem 168:225–232.  https://doi.org/10.1016/j.foodchem.2014.07.059 CrossRefGoogle Scholar
  13. 13.
    Avram AM, Morin P, Brownmiller C et al (2017) Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod Process 106:91–101.  https://doi.org/10.1016/j.fbp.2017.07.006 CrossRefGoogle Scholar
  14. 14.
    Ćujić N, Trifković K, Bugarski B et al (2016) Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Ind Crop Prod 86:120–131.  https://doi.org/10.1016/j.indcrop.2016.03.045 CrossRefGoogle Scholar
  15. 15.
    AOAC (1990) Official methods of analysis. Association of Official Agricultural Chemists 15th ed. Washington, DC, p 136–138Google Scholar
  16. 16.
    Larrauri JA, Rupérez P, Saura-Calixto F (1997) Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agric Food Chem 45:1390–1393.  https://doi.org/10.1021/jf960282f CrossRefGoogle Scholar
  17. 17.
    Rufino MSM, Alves RE, Brito ES, Pérez-Jiménez J et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002.  https://doi.org/10.1016/j.foodchem.2010.01.037 CrossRefGoogle Scholar
  18. 18.
    Obanda M, Owuor PO (1997) Flavanol composition and caffeine content of green leaf as quality potential indicators of kenyan black teas. J Sci Food Agric 74:209–215CrossRefGoogle Scholar
  19. 19.
    Benzie IFF, Strain JJ (1999) Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay. Methods Enzymol 299:15–36CrossRefGoogle Scholar
  20. 20.
    Miller NJ, Rice-Evans C, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412.  https://doi.org/10.1042/cs0840407 CrossRefPubMedGoogle Scholar
  21. 21.
    Brown WE, Marques MR (2014) USP and dissolution—20 years of progress. Dissolution Technol: 24–27Google Scholar
  22. 22.
    Vasile FE, Judis MA, Mazzobre MF (2017) Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system. Carbohydr Polym 166:309–319.  https://doi.org/10.1016/j.carbpol.2017.03.004 CrossRefGoogle Scholar
  23. 23.
    Knez M, Nikolic M, Zekovic M et al (2017) The influence of food consumption and socio-economic factors on the relationship between zinc and iron intake and status in a healthy population. Public Health Nutr 20:2486–2498.  https://doi.org/10.1017/S1368980017001240 CrossRefPubMedGoogle Scholar
  24. 24.
    Belščak-Cvitanovic A, Bušić A, Barišić L et al (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152.  https://doi.org/10.1016/j.foodhyd.2016.01.020 CrossRefGoogle Scholar
  25. 25.
    Fontes GC, Calado VMA, Rossi AM et al (2013) Characterization of antibiotic-loaded alginate-osa starch microbeads produced by ionotropic pregelation. Biomed Res Int 2013:11.  https://doi.org/10.1155/2013/472626 CrossRefGoogle Scholar
  26. 26.
    Basu SK, Rajendran A (2008) Studies in the development of nateglinide loaded calcium alginate and chitosan coated calcium alginate beads. Chem Pharm Bull (Tokyo) 56:1077–1084.  https://doi.org/10.1248/cpb.56.1077 CrossRefGoogle Scholar
  27. 27.
    Pothakamury UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397–406.  https://doi.org/10.1016/S0924-2244(00)89218-3 CrossRefGoogle Scholar
  28. 28.
    Maderuelo C, Zarzuelo A, Lanao JM (2011) Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 154:2–19.  https://doi.org/10.1016/j.jconrel.2011.04.002 CrossRefGoogle Scholar
  29. 29.
    Bettini R, Catellani PL, Santi P et al (2001) Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Control Release 70:383–391.  https://doi.org/10.1016/S0168-3659(00)00366-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Bittencourt LLA, Pedrosa C, Sousa VP et al (2013) Pea protein provides a promising matrix for microencapsulating iron. Plant Foods Hum Nutr 68:333–339.  https://doi.org/10.1007/s11130-013-0383-8 CrossRefGoogle Scholar
  31. 31.
    Hellen CUT (2007) Bypassing translation initiation. Structure 15:4–6.  https://doi.org/10.1016/j.str.2006.12.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Obreque-Slier E, Peña-Neira Á, López-Solís R et al (2010) Comparative study of the phenolic composition of seeds and skins from carménère and cabernet sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chem 58:3591–3599.  https://doi.org/10.1021/jf904314u CrossRefGoogle Scholar
  33. 33.
    Pertuzatti PB, Barcia MT, Rodrigues D et al (2014) Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chem 164:81–88.  https://doi.org/10.1016/j.foodchem.2014.04.114 CrossRefPubMedGoogle Scholar
  34. 34.
    Chotiko A, Sathivel S (2017) Releasing characteristics of anthocyanins extract in pectin–whey protein complex microcapsules coated with zein. J Food Sci Technol 54:2059–2066.  https://doi.org/10.1007/s13197-017-2643-3 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang Z, Li Y, Chen L et al (2013) A study of controlled uptake and release of anthocyanins by oxidized starch microgels. J Agric Food Chem 61:5880–5887CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luciana Linhares de Azevedo Bittencourt
    • 1
    Email author
  • Kelly Alencar Silva
    • 1
  • Valéria Pereira de Sousa
    • 2
  • Gizele Cardoso Fontes-Sant’Ana
    • 3
  • Maria Helena Rocha-Leão
    • 1
  1. 1.Escola de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Faculdade de Farmácia, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto de Química, Departamento de Tecnologia de Processos BioquímicosUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations