Plant Foods for Human Nutrition

, Volume 70, Issue 4, pp 365–370 | Cite as

Contribution of Macromolecular Antioxidants to Dietary Antioxidant Capacity: A Study in the Spanish Mediterranean Diet

  • Jara Pérez-Jiménez
  • M. Elena Díaz-Rubio
  • Fulgencio Saura-CalixtoEmail author
Original Paper


Epidemiological and clinical studies show that diets with a high antioxidant capacity, such us those rich in plant food and beverages, are associated with significant decreases in the overall risk of cardiovascular disease or colorectal cancer. Current studies on dietary antioxidants and dietary antioxidant capacity focus exclusively on low molecular weight or soluble antioxidants (vitamins C and E, phenolic compounds and carotenoids), ignoring macromolecular antioxidants. These are polymeric phenolic compounds or polyphenols and carotenoids linked to plant food macromolecules that yield bioavailable metabolites by the action of the microbiota with significant effects either local and/or systemic after absorption. This study determined the antioxidant capacity of the Spanish Mediterranean diet including for the first time both soluble and macromolecular antioxidants. Antioxidant capacity and consumption data of the 54 most consumed plant foods and beverages were used. Results showed that macromolecular antioxidants are the major dietary antioxidants, contributing a 61 % to the diet antioxidant capacity (8000 μmol Trolox, determined by ABTS method). The antioxidant capacity data for foods and beverages provided here may be used to estimate the dietary antioxidant capacity in different populations, where similar contributions of macromolecular antioxidants may be expected, and also to design antioxidant-rich diets. Including macromolecular antioxidants in mechanistic, intervention and observational studies on dietary antioxidants may contribute to a better understanding of the role of antioxidants in nutrition and health.


Dietary antioxidants Dietary antioxidant capacity Food antioxidant capacity Macromolecular antioxidants Non-extractable polyphenols Spanish Mediterranean diet 



We thank M.L. García-González for technical assistance.

Compliance with Ethical Standards


This research was supported by the Spanish Ministry of Economy and Competitiveness (AGL2011-27,741). M.E. D-R. and J. P-J. acknowledge the CSIC and the MINNECO for JAE-Doc and Juan de la Cierva postdoctoral contracts, respectively.

Conflict of Interests

The authors declare no conflict of interests.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

Supplementary material

11130_2015_513_MOESM1_ESM.doc (66 kb)
Table S1 (DOC 66 kb)
11130_2015_513_MOESM2_ESM.doc (30 kb)
Table S2 (DOC 29.5 kb)
11130_2015_513_MOESM3_ESM.doc (88 kb)
Table S3 (DOC 88 kb)
11130_2015_513_MOESM4_ESM.doc (48 kb)
Table S4 (DOC 47.5 kb)
11130_2015_513_MOESM5_ESM.doc (39 kb)
Table S5 (DOC 39 kb)
11130_2015_513_MOESM6_ESM.doc (103 kb)
Table S6 (DOC 103 kb)


  1. 1.
    Møller P, Loft S (2006) Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic Biol Med 41:388–415CrossRefGoogle Scholar
  2. 2.
    Oyagbemi AA, Azeez OI, Saba AB (2009) Interactions between reactive oxygen species and cancer: the roles of natural dietary antioxidants and their molecular mechanisms of action. Asian Pac J Cancer Prev 10:535–544Google Scholar
  3. 3.
    Noguchi N (2002) Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med 33:1480–1489CrossRefGoogle Scholar
  4. 4.
    Brighenti F, Valtueña S, Pellegrini N, Ardigò D, Del Rio D, Salvatore S, et al. (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93:619–625CrossRefGoogle Scholar
  5. 5.
    Del Rio D, Agnoli C, Pellegrini N, Krogh V, Brighenti F, Mazzeo T, et al. (2011) Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J Nutr 141:118–123CrossRefGoogle Scholar
  6. 6.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. (2013) Primary prevention of cardiovascular disease with a mediterranean diet. New Eng J Med 368:1279–1290CrossRefGoogle Scholar
  7. 7.
    La Vecchia C, Decarli A, Serafini M, Parpinel M, Bellocco R, Galeone C, et al. (2013) Dietary total antioxidant capacity and colorectal cancer: a large case-control study in Italy. Intl J Cancer 133:1447–1451CrossRefGoogle Scholar
  8. 8.
    Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200CrossRefGoogle Scholar
  9. 9.
    Arranz S, Saura-Calixto F, Shaha S, Kroon PA (2009) High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agric Food Chem 57:7298–7303CrossRefGoogle Scholar
  10. 10.
    Goñi I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of β-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54:5382–5387CrossRefGoogle Scholar
  11. 11.
    Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187CrossRefGoogle Scholar
  12. 12.
    Pérez-Jiménez J, Saura Calixto F (2015) Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: intake in four european countries. Food Res Int 74:315–323CrossRefGoogle Scholar
  13. 13.
    Sánchez-Tena S, Lizárraga D, Miranda A, Vinardell MP, García-García F, Dopazo J, et al. (2013) Grape antioxidant dietary fiber inhibits intestinal polyposis in ApcMin/+ mice: relation to cell cycle and immune response. Carcinogenesis 34:1881–1888CrossRefGoogle Scholar
  14. 14.
    Pérez-Jiménez J, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, et al. (2008) Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutr 24:646–653CrossRefGoogle Scholar
  15. 15.
    Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F (2013) Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev 26:118–129CrossRefGoogle Scholar
  16. 16.
    Lizarraga D, Vinardell MP, Noé V, van Delft JH, Alcarraz-Vizán G, van Breda SG, et al. (2011) A lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber induces genetic and metabolic alterations in colon mucosa of female C57Bl/6 J mice. J Nutr 141:1597–1604CrossRefGoogle Scholar
  17. 17.
    Ministry of Agriculture, Food and Environment La alimentación mes a mes. Diciembre (2013) Publishing Office, Spanish Ministry of Agriculture, Food and Environment: MadridGoogle Scholar
  18. 18.
    Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002) Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J Agric Food Chem 50:1785–1790CrossRefGoogle Scholar
  19. 19.
    Pérez-Jiménez J, Arranz S, Saura-Calixto F (2009) Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Res Int 42:1381–1388CrossRefGoogle Scholar
  20. 20.
    Arranz S, Pérez-Jiménez J, Saura-Calixto F (2008) Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter. Eur Food Res Technol 227:425–431Google Scholar
  21. 21.
    Saura-Calixto F, Díaz-Rubio ME (2007) Polyphenols associated with dietary fibre in wine. A wine polyphenols gap? Food Res Int 40:613–619CrossRefGoogle Scholar
  22. 22.
    Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, et al. (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819Google Scholar
  23. 23.
    Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402CrossRefGoogle Scholar
  24. 24.
    Kolomvotsou AI, Rallidis LS, Mountzouris KC, Lekakis J, Koutelidakis A, Efstathiou S, et al. (2013) Adherence to mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur J Nutr 52:37–48CrossRefGoogle Scholar
  25. 25.
    Serrano J, Goñi I, Saura-Calixto F (2007) Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res Int 40:15–21CrossRefGoogle Scholar
  26. 26.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  27. 27.
    Pérez-Jiménez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Am J Clin Nutr 64:S112–S120CrossRefGoogle Scholar
  28. 28.
    Ministry of Agriculture, Food and Environment La alimentación en España (2006) Publishing Office, Spanish Ministry of Agriculture, Food and Environment : MadridGoogle Scholar
  29. 29.
    Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94:442–447Google Scholar
  30. 30.
    Tabernero M, Serrano J, Saura-Calixto F (2006) The antioxidant capacity of cocoa products: contribution to the spanish diet. Int J Food Sci Technol 41:28–32CrossRefGoogle Scholar
  31. 31.
    Saura-Calixto F, Goni I (2009) Definition of the Mediterranean diet based on bioactive compounds. Crit Rev Food Sci Nutr 49:145–152Google Scholar
  32. 32.
    National Statistics Institute (INE) (1965) Encuesta de Presupuestos Familiares (marzo 1964-marzo 1965). Resultados provisionales, nacionales y provinciales. Publishing Office, Spanish National Institute of Statistics, MadridGoogle Scholar
  33. 33.
    Pérez-Jiménez J, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, et al. (2009) Bioavailability of phenolic antioxidants associated with dietary fiber: plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum Nutr 64:102–107CrossRefGoogle Scholar
  34. 34.
    Arranz S, Silván JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molec Nutr Food Res 54:1646–1658Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jara Pérez-Jiménez
    • 1
  • M. Elena Díaz-Rubio
    • 1
  • Fulgencio Saura-Calixto
    • 1
    Email author
  1. 1.Department of Metabolism and NutritionInstitute of Food Science, Technology and Nutrition (ICTAN-CSIC)MadridSpain

Personalised recommendations