Plant Foods for Human Nutrition

, Volume 70, Issue 2, pp 193–199 | Cite as

Anthocyanins and Phenolic Acids of Hybrid and Native Blue Maize (Zea mays L.) Extracts and Their Antiproliferative Activity in Mammary (MCF7), Liver (HepG2), Colon (Caco2 and HT29) and Prostate (PC3) Cancer Cells

  • D. A. Urias-Lugo
  • J. B. Heredia
  • M. D. Muy-Rangel
  • J. B. Valdez-Torres
  • S. O. Serna-Saldívar
  • J. A. Gutiérrez-UribeEmail author
Original Paper


Blue maize is an excellent source of bioactive components such as phenolic acids and anthocyanins but when it is processed for human consumption, these compounds decrease considerably. Therefore, blue maize could be directed to produce nutraceutical extracts. The aim of this study was to evaluate the relation between anthocyanins composition of acidified and non-acidified extracts from native and hybrid blue maize genotypes and their antiproliferative effect in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. The most abundant phenolic acid was ferulic acid. Nine anthocyanins were quantified in the extracts, being Cy3-Glu the most abundant. Acylated forms were also obtained in high abundance depending of the extraction method. An extract concentration range of 4.31 to 7.23 mg/mL inhibited by 50 % the growth of untransformed cells NIH3T3. Antiproliferative effect on PC3, Caco2, HepG2 and MCF7 cancer cells of acidified extracts from hybrid blue maize was larger than the observed using non-acidified extracts. Among the nine compounds that were quantified in the extracts tested, CyMalGlu I showed the strongest correlation with the reduction of cell viability in Caco2 (−0.876), HepG2 (−0.813), MCF7 (−0.765) and PC3 (−0.894). No significant correlation or differences in antiproliferative effect on HT29 was found among the extracts. The method of extraction of maize anthocyanins must be selected to obtain a high yield of CyMalGlu I more than only Cy3-Glu since acylation affects the inhibition of cancer cell growth.


Hybrid maize Native maize Anthocyanins Phenolic acids Antiproliferative activity 



Cyanidin 3-glucoside


Cyanidin disuccinyl-glucoside


Cyanidin malonyl-glucoside


Cyanidin succinyl-glucoside


Pelargonidin 3-glucoside


Pelargonidin malonyl-glucoside



We thank Hibridos Lobo, Grupo Ceres and CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo) for the provided maize samples and to Irasema Romo for the provided technical support. Also, thanks to CONACYT for the funding provided for scholarship and travelling expenses (Programa Becas Mixtas) and Nutriomics Research Chair from Tecnológico de Monterrey.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Del Pozo-Insfran D, Brenes CH, Serna-Saldívar SO, Talcott ST (2006) Poliphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39:696–703. doi: 10.1016/j.foodres.2006.01.014 CrossRefGoogle Scholar
  2. 2.
    Del Pozo-Insfran D, Serna SO, Brenes CH, Talcott ST (2007) Polyphenolics and antioxidant capacity of white and blue corns processed into tortillas and chips. Cereal Chem 84:162–168. doi: 10.1094/CCHEM-84-2-0162 CrossRefGoogle Scholar
  3. 3.
    De La Parra C, Serna-Saldívar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55(10):4177–4183. doi: 10.1021/jf063487p CrossRefGoogle Scholar
  4. 4.
    López-Martínez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, García HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of mexican maize. Food Sci Technol 42:1187–1192. doi: 10.1016/j.lwt.2008.10.010 Google Scholar
  5. 5.
    Mora-Rochín S, Gutiérrez-Uribe JA, Serna-Saldívar SO, Sánchez-Peña P, Reyes-Moreno C, Milán-Carrillo J (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:502–508. doi: 10.1016/j.jcs.2010.08.010 CrossRefGoogle Scholar
  6. 6.
    Rojas-García C, García-Lara S, Serna-Saldivar SO, Gutiérrez-Uribe JA (2012) Chemopreventive effects of free and bound phenolics asociated to steep waters (nejayote) obtained after nixtamalization of different maize types. Plant Foods Hum Nutr 67(1):94–99. doi: 10.1007/s11130-011-0272-y CrossRefGoogle Scholar
  7. 7.
    Urias-Lugo DA, Heredia JB, Serna-Salivar SO, Muy-Rangel MD, Valdez-Torres JB (2014) Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA J Food. doi: 10.1080/19476337.2014980324 Google Scholar
  8. 8.
    Urias-Lugo DA, Heredia JB, Valdez-Torres JB, Muy-Rangel MD, Serna-Saldivar SO, García-Lara S (2015) Physical properties and chemical characterization of macro- and micronutriments of elite blue maize hybrids (Zea mays L). Cereal Res Commun. doi: 10.1556/CRC.2014.0044 Google Scholar
  9. 9.
    Urias-Peraldí M, Gutiérrez-Uribe JA, Preciado-Ortiz RE, Cruz-Morales AS, Serna-Saldívar SO, García-Lara S (2013) Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crop Res 141:69–76. doi: 10.1016/j.fcr.2012.11.008 CrossRefGoogle Scholar
  10. 10.
    Abdel-Aal ESM, Young JC, Rabalski I (2006) Anthocyanin composition in black, blue, pink, purple and red cereal grains. J Agric Food Chem 54:4696–4704. doi: 10.1021/jf0606609 CrossRefGoogle Scholar
  11. 11.
    Harakotr B, Suriharn B, Tangwongchai R, Scott MP, Lertrat K (2014) Anthocyanin, phenolic and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chem 164:510–517. doi: 10.1016/j.foodchem.2014.05.069 CrossRefGoogle Scholar
  12. 12.
    Aguayo-Rojas J, Mora-Rochín S, Cuevas-Rodríguez EO, Serna-Saldivar SO, Gutierrez-Uribe JA, Reyes-Moreno C, Milán-Carrillo J (2012) Phytochemicals and antioxidant capacity of tortillas obtained after lime-cooking extrusion process of whole pigmented mexican maize. Plant Foods Hum Nutr 67:178–185. doi: 10.1007/s11130-012-0288-y CrossRefGoogle Scholar
  13. 13.
    Mendoza-Díaz S, Ortiz-Valerio MC, Castaño-Tostado E, Figueroa-Cárdenas JD, Reynoso-Camacho R, Ramos-Gómez M, Campos-Vega R, Loarca-Piña G (2012) Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Foods Hum Nutr 67:442–449. doi: 10.1007/s11130-012-0326-9 CrossRefGoogle Scholar
  14. 14.
    Delgado-Vargas F, Paredes-López O (2003) Anthocyanins and betalains. In: Delgado-Vargas F, Paredes-López O (eds) Natural colorants for food and nutraceutical uses. CRC Press, Florida, pp 167–219Google Scholar
  15. 15.
    Wallace TC, Giusti MM (2014) Basic anthocyanin chemistry and dietary sources. In: Wallace TC, Giusti MM (eds) Anthocyanins in healt and disease. CRC Press, Florida, pp 14–89Google Scholar
  16. 16.
    Wang L, Stoner G (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290. doi: 10.1016/j.canlet.2008.05.020 CrossRefGoogle Scholar
  17. 17.
    Jing P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56:9391–9398. doi: 10.1021/jf8005917 CrossRefGoogle Scholar
  18. 18.
    Zhao X, Zhang C, Guigas C, Ma Y, Corrales M, Tauscher B, Hu X (2009) Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. Eur Food Res Technol 228:759–765. doi: 10.1007/s00217-008-0987-7 CrossRefGoogle Scholar
  19. 19.
    Yang Z, Chen Z, Yuan S, Zhai W, Piao X (2009) Extraction and identification of anthocyanin from purple corn (Zea mays L.). Int J Sci Technol 44:2485–2492. doi: 10.1111/j.1365-2621.2009.02045.x Google Scholar
  20. 20.
    Dewanto V, Wu X, Liu RH (2002) Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:4959–4964. doi: 10.1021/jf0255937 CrossRefGoogle Scholar
  21. 21.
    Gutiérrez-Uribe JA, Romo-Lopez I, Serna-Saldívar SO (2011) Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. J Funct Foods 3:290–297. doi: 10.1016/j.jff.2011.05.004 CrossRefGoogle Scholar
  22. 22.
    Gaxiola-Cuevas N (2013) Caracterización de antocianinas de maíces (Zea mays L) criollos azules de Sinaloa. Efecto del proceso de nixtamalización. Thesis, Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS)Google Scholar
  23. 23.
    Žilić S, Serpen A, Akıllıoğlu G, Gökmen V, Vančetović J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 60:1224–1231. doi: 10.1021/jf204367z CrossRefGoogle Scholar
  24. 24.
    Ramos-Escudero F, Muñoz AM, Alvarado-Ortíz C, Alvarado A, Yañez J (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15:206–2015. doi: 10.1089/jmf.2010.0342 CrossRefGoogle Scholar
  25. 25.
    Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, Araiz-Hernández D, Alvarez MM, Serna-Saldívar SO (2014) Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Foods Hum Nutr 69:331–336. doi: 10.1007/s11130-014-0438-5 CrossRefGoogle Scholar
  26. 26.
    Remsberg CM, Yáñez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM (2008) Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22:169–179. doi: 10.1002/ptr.2277 CrossRefGoogle Scholar
  27. 27.
    Roupe KA, Remsberg CM, Yáñez JA, Davies NM (2006) Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol 1(1):81–101CrossRefGoogle Scholar
  28. 28.
    Desjardins J, Tanabe S, Bergeron C, Gafner S, Grenier D (2012) Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. J Med Food 15(12):1045–1050. doi: 10.1089/jmf.2011.0316 CrossRefGoogle Scholar
  29. 29.
    Matera R, Gabbanini S, Berretti S, Amorati R, De Nicola GR, Iori R, Valgimigli L (2015) Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity. Food Chem 166:397–406. doi: 10.1016/j.foodchem.2014. 06.056 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. A. Urias-Lugo
    • 1
  • J. B. Heredia
    • 1
  • M. D. Muy-Rangel
    • 1
  • J. B. Valdez-Torres
    • 1
  • S. O. Serna-Saldívar
    • 2
  • J. A. Gutiérrez-Uribe
    • 2
    Email author
  1. 1.Ciencia y Tecnología de AlimentosCentro de Investigación en Alimentación y DesarrolloCuliacánMexico
  2. 2.Centro de Biotecnología FEMSA, Escuela de Ingeniería y CienciasTecnológico de Monterrey-Campus MonterreyMonterreyMexico

Personalised recommendations