Plant Foods for Human Nutrition

, Volume 70, Issue 2, pp 119–127 | Cite as

Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts

  • Angela Periche
  • Maria Luisa Castelló
  • Ana Heredia
  • Isabel Escriche
Original Paper

Abstract

This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid–liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.

Keywords

Microwave energy Ultrasound technique Antioxidants Phenols Flavonoids Steviol glycosides 

Notes

Acknowledgments

The authors thank the Universitat Politècnica de València for funding the project PAID 2011-ref: 2012 and the Generalitat Valenciana (Spain) for the project GV/2013/029.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11130_2015_475_MOESM1_ESM.doc (46 kb)
ESM 1(DOC 46 kb)

References

  1. 1.
    Lemus R, Vega A, Zura L, Ah K (2012) Stevia rebaudiana bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132CrossRefGoogle Scholar
  2. 2.
    JECFA. Joint FAO/WHO Expert Committee on Food Additives (2008) Steviol glycosides. In Compendium of Food Additive Specifications, 69th Meeting, FAO/WHO Monographs 5, Rome, ItalyGoogle Scholar
  3. 3.
    Wölwer-Rieck U (2012) The leaves of Stevia rebaudiana (bertoni), their constituents and the analyses thereof: a review. J Agric Food Chem 60:886–895CrossRefGoogle Scholar
  4. 4.
    Anton S, Martin C, Han H, Coulon S, Cefalu W, Geiselman P et al (2010) Effects of Stevia, aspartame, and sucrose on food intake, satiety and postprandial glucose and insulin levels. Appetite 55:37–43CrossRefGoogle Scholar
  5. 5.
    De Oliveira BH, Packer JF, Chimelli M, De Jesus DA (2007) Enzymatic modification of stevioside by cell-free extract of Gibberella fujikuroi. J Biotechnol 131:92–96CrossRefGoogle Scholar
  6. 6.
    Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Therapeut 121:41–54CrossRefGoogle Scholar
  7. 7.
    Muanda F, Soulimani R, Diop B, Dicko A (2011) Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana bertoni leaves. LWT-Food Sci Technol 44:1865–1872CrossRefGoogle Scholar
  8. 8.
    Periche A, Koutsidis G, Escriche I (2014) Composition of antioxidants and amino acids in Stevia leaf infusions. Plant Foods Hum Nutr 69:1–7CrossRefGoogle Scholar
  9. 9.
    European Food Safety Authority (EFSA) (2011) Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. EFSA J 9(1):1972. doi:10.2903/j.efsa.2011.1972 Google Scholar
  10. 10.
    Kroyer J (2010) Stevioside and Stevia-sweeter in food: application, stability and interaction with food ingredients. Journal of Consumer Protection and Food Safety. doi:10.1007/s00003-010-0557-3
  11. 11.
    Quispe C, Viveros-Valdez E, Schmeda-Hirschmann G (2012) Phenolic constituents of the Chilean herbal tea Fabiana imbricata R. et P. Plant Foods Hum Nutr 67:242–246CrossRefGoogle Scholar
  12. 12.
    Dorta E, Lobo MG, González M (2013) Improving the efficiency of antioxidant extraction from mango peel by using microwave-assisted extraction. Plant Foods Hum Nutr 68:190–199CrossRefGoogle Scholar
  13. 13.
    Toma M, Vinatoru M, Paniwnyk L, Mason TJ (2001) Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason Sonochem 8:137–142CrossRefGoogle Scholar
  14. 14.
    Jaitak V, Bandna BS, Kaul VK (2009) An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni). Phytochem Anal 20:240–245CrossRefGoogle Scholar
  15. 15.
    Liu J, Li JW, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215–221CrossRefGoogle Scholar
  16. 16.
    Ahmad-Qasem MH, Cánovas J, Barrajón-Catalán E, Micol V, Cárcel JA, García-Pérez JV (2013) Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov Food Sci Emerg 17:120–129CrossRefGoogle Scholar
  17. 17.
    Da Porto C, Porretto E, Decorti D (2013) Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) sedes. Ultrason Sonochem 20:1076–1080CrossRefGoogle Scholar
  18. 18.
    Yang L, Cao YL, Jiang JG, Lin QS, Chen J, Zhu L (2010) Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara. Engl J Sep Sci 33:1349–1355Google Scholar
  19. 19.
    Wang JX, Xiao XH, Li GK (2008) Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. J Chromatogr A 1198–1199:45–53CrossRefGoogle Scholar
  20. 20.
    Teo CC, Yong JWH, Tan SN, Ong ES (2009) Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. J Sep Sci 32:613–622CrossRefGoogle Scholar
  21. 21.
    Woelwer-Rieck U, Lankes C, Wawrzun A, Wüst M (2010) Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana. Eur Food Res Technol 231:581–588CrossRefGoogle Scholar
  22. 22.
    Choi YH, Kim I, Yoon K, Lee SJ, Kim CY, Yoo KP, Choi YH, Kim J (2002) Supercritical fluid extraction and liquid chromatographic-electrospray mass spectrometric analysis of stevioside from Stevia rebaudiana leaves. Chromatographia 55:617–620CrossRefGoogle Scholar
  23. 23.
    Commission Decision 2002/657/EC of 12 August (2002). Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, OJEC L221, 8–36. Brusels, BelgiumGoogle Scholar
  24. 24.
    Sakanaka S, Tachibana Y, Okada Y (2004) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem 89:569–575CrossRefGoogle Scholar
  25. 25.
    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014CrossRefGoogle Scholar
  26. 26.
    Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99:478–483CrossRefGoogle Scholar
  27. 27.
    Cacciola F, Delmonte P, Jaworska K, Dugo P, Mondello L, Rader J (2011) Employing ultra-high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. J Chromatogr A 1218:2012–2018CrossRefGoogle Scholar
  28. 28.
    Kennelly E (2002) Sweet and non-sweet constituents of Stevia rebaudiana (Bertoni) Bertoni. Stevia, the Genus of Stevia, Medicinal and aromatic plants- industrial profiles. Ed. Taylor and Francis, London, ISBN: 0-415-26830-3, 68–85.Google Scholar
  29. 29.
    Prakash I, DuBois GE, Clos JF, Wilkens KL, Fosdick LE (2008) Development of rebaudiana, a natural, non-caloric sweetener. Food Chem Toxicol 46:75–82CrossRefGoogle Scholar
  30. 30.
    Zhang G, He L, Hu M (2011) Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov Food Sci Emerg 12:18–25Google Scholar
  31. 31.
    Liazid A, Palma M, Brigui J, Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140:29–34CrossRefGoogle Scholar
  32. 32.
    Inglett GE, Rose DJ, Chen D, Stevenson DG, Biswas A (2010) Phenolic content and antioxidant activity of extracts from whole buckwheat (Fagopyrum esculentum Möench) with or without microwave irradiation. Food Chem 119:1216–1219CrossRefGoogle Scholar
  33. 33.
    Ya-Qin M, Jian-Chu C, Dong-Hong L, Xing-Qian Y (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Angela Periche
    • 1
  • Maria Luisa Castelló
    • 1
  • Ana Heredia
    • 1
  • Isabel Escriche
    • 1
  1. 1.Institute of Food Engineering for Development (IUIAD). Food Technology Department (DTA)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations