Plant Foods for Human Nutrition

, Volume 69, Issue 3, pp 283–289 | Cite as

Effects of Soy Protein and Calcium Levels on Mineral Bioaccessibility and Protein Digestibility from Enteral Formulas

  • María Gimena Galán
  • Silvina Rosa Drago
Original Paper


Enteral formulas (EF) are complex food systems which have all the nutrients in their matrix for the complete human nourishment. However, there are components in EF which can interact with minerals, reducing their absorption, and thereof the EF nutritional quality. The effect of soy protein (SP) and Ca content on Fe, Zn, and Ca bioaccessibility and protein digestibility (%DP) was assessed using a response surface design in EF. Tested SP levels were 2.5–5.0 g/100 mL of total protein. Ca levels were adjusted with Ca citrate within a range between 50 and 100 mg/100 mL. SP content negatively influenced %DP and Fe, Zn and Ca bioaccessibility. As SP content increased, mineral bioaccessibility and %DP decreased, probably due to the increased levels of phytic acid and trypsin inhibitors from SP. Ca content only affected %DCa, which had a direct relationship with Ca levels, while did not affect Fe and Zn bioaccessibility or %DP. Since Ca citrate did not impair Fe and Zn bioaccessibility, it could be an appropriate Ca source for EF fortification.


Enteral formulas Mineral bioaccessibility Protein digestibility Soy protein Calcium citrate 



Ascorbic acid


Central composite design


Enteral formulas


Ca dialyzability


Fe dialyzability


Zn dialyzability


Protein digestibility


Soy protein


Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Suchner U, Senftleben U, Eckaw T, Scholz M, Beck K, Murr R et al. (1996) Enteral versus parenteral nutrition: effects on gastrointestinal function and metabolism. Nutrition 12(1):13–22. doi: 10.1016/0899-9007(95)00016-X CrossRefGoogle Scholar
  2. 2.
    Lochs H, Pichard C, Alison SP (2006) Evidence supports nutritional support. Clin Nutr 25(2):177–179. doi: 10.1016/j.clnu.2006.02.002 CrossRefGoogle Scholar
  3. 3.
    Harvey L (2001) Mineral bioavailability. Nutrition & Food Science 31(4):179–182. doi: 10.1108/00346650110392253 CrossRefGoogle Scholar
  4. 4.
    Hurrell RF, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S. doi: 10.3945/ajcn.2010.28674F CrossRefGoogle Scholar
  5. 5.
    Pizarro F, Boccio J, Salgueiro M, Olivares M, Carmuega E, Weill R (2012) Bioavailability of stabilised ferrous gluconate with glycine in fresh cheese matrix: a novel iron compound for food fortification. Biol Trace Elem Res 151(3):441–445. doi: 10.1007/s12011-012-9574-7 CrossRefGoogle Scholar
  6. 6.
    Brazaca SGC, da Silva FC (2003) Enhancers and inhibitors of iron availability in legumes. Plant Foods Hum Nutr 58(3):1–8CrossRefGoogle Scholar
  7. 7.
    Lönnerdal B (1997) Effects of milk and milk components on calcium, magnesium and trace elements absorption during infancy. Physiol Rev 77(3):643–69Google Scholar
  8. 8.
    Li H, Zhu K, Zhou H, Peng W, Guo X (2013) Comparative study about some physical properties, in vitro digestibility and immunoreactivity of soybean protein isolate for infant formula. Plant Foods for Hum Nutr 68(2):124–130. doi: 10.1007/s11130-013-0358-9 CrossRefGoogle Scholar
  9. 9.
    Jenkins DJ, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A et al (2010) Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr 140(12):2302S–2311S. doi: 10.3945/jn.110.124958 CrossRefGoogle Scholar
  10. 10.
    Radcliffe JD, Czajka-Narins DM (1998) Partial replacement of dietary casein with soy protein isolate can reduce the severity of retinoid-induced hypertriglyceridemia. Plant Foods Hum Nutr 52:97–108. doi: 10.1023/A:1008092906465 CrossRefGoogle Scholar
  11. 11.
    Sirtori CR, Lovati MR (2001) Soy proteins and cardiovascular disease. Curr Atheroscler Rep 3(1):47–53. doi: 10.1007/s11883-001-0010-2 CrossRefGoogle Scholar
  12. 12.
    Lynch SR, Dasenko SA, Cook JMA, Hurrell RF (1994) Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans. Am J Clin Nutr 60(4):567–572Google Scholar
  13. 13.
    Drago SR, Valencia ME (2004) Influence of components of infant formulas on in vitro iron, zinc, and calcium availability. J Agric Food Chem 52(10):3202–3207. doi: 10.1021/jf035191e CrossRefGoogle Scholar
  14. 14.
    Bernardi C, Freyre M, Sambucetti ME, Pirovani ME (2004) Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp. Plant Foods Hum Nutr 59(4):175–179. doi: 10.1007/s11130-004-0047-9 CrossRefGoogle Scholar
  15. 15.
    AOAC (2000) Official Methods of Analysis, 17th edn. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  16. 16.
    Drago SR, Binaghi MJ, de Ferrer PA R, Valencia ME (2005) Assessment of iron, zinc and calcium dialyzability in infant formulas and iron fortified milks. In: Arthur PR (ed) Food Research, Safety and Policies. Nova Science Publishers Inc, New York, pp 113–132Google Scholar
  17. 17.
    Rudloff S, Lönnerdal B (1992) Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. J Pediatric Gastroenterol Nutr 15(1):25–33CrossRefGoogle Scholar
  18. 18.
    AACC (1982) American Association of Cereal Chemist. Approved methods. Method 71–10. St Paul, MNGoogle Scholar
  19. 19.
    Sanz-Penella JM, Laparra JM, Sanz Y, Haros M (2012) Bread supplemented with amaranth (Amaranthus cruentus): effect of phytates on in vitro iron absorption. Plant Foods Hum Nutr 67:50–56. doi: 10.1007/s11130-011-0269-6 CrossRefGoogle Scholar
  20. 20.
    Lönnerdal B (1985) Dietary factors affecting trace element bioavailability from human milk, cow’s milk and infant formulas. Prog Food Nutr Sci 9(1–2):35–62Google Scholar
  21. 21.
    Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E (2005) Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in china. J Agric Food Chem 53(26):10285–10290. doi: 10.1021/jf052051r CrossRefGoogle Scholar
  22. 22.
    Hallberg L, Brune M, Erlandsson M, Sandberg A-S, Rossander-Hulten L (1991) Calcium: effect of different amounts on non heme- and heme-iron absorption in humans. Am J Clin Nutr 53(1):112–119Google Scholar
  23. 23.
    Hallberg L, Rossander-Hulte L, Brune M, Gleerup A (1993) Inhibition of haem-iron absorption in man by calcium. Br J Nutr 69(2):533–540. doi: 10.1079/BJN19930053 CrossRefGoogle Scholar
  24. 24.
    Kalkwarf HJ, Harrast SD (1998) Effects of calcium supplementation and lactation on iron status. Am J Clin Nutr 67(6):1244–1249Google Scholar
  25. 25.
    Minihane AM, Fairweather-Tait SJ (1998) Effect of calcium supplementation on daily non heme-iron absorption and long- term iron status. Am J Clin Nutr 68(1):96–102Google Scholar
  26. 26.
    Hallberg L, Rossanser-Hultén L, Brune M, Gleerup A (1992) Calcium and iron absorption: mechanism of action and nutritional importance. Eur J Clin Nutr 46(5):317–327Google Scholar
  27. 27.
    Pérez-Llamas F, Larqué E, Marín JF, Zamora S (2001) Disponibilidad in vitro de minerales en fórmulas infantiles con distinta fuente proteica. Nutr Hosp 16(5):157–161Google Scholar
  28. 28.
    Lönnerdal B, Cederblad A, Davidsson L, Sandstrom B (1984) The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr 40(5):1064–1070Google Scholar
  29. 29.
    Wood RJ, Zheng J (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. Am J Clin Nutr 65(6):1803–1809Google Scholar
  30. 30.
    Dawson-Hughes B, Seligson FH, Hughes VA (1986) Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. Am J Clin Nutr 44(1):83–88Google Scholar
  31. 31.
    Roig MJ, Alegría A, Barberá R, Farré R, Lagarda MJ (1999) Calcium bioavailability in human milk, cow milk and infant formulas comparison between dialysis and solubility methods. Food Chem 65(3):353–357. doi: 10.1016/S0308-8146(98)00232-5 CrossRefGoogle Scholar
  32. 32.
    de Oliveira CK, Canniatti-Brazaca SG (2011) Disponibilidade de ferro, digestibilidade de proteína e teor de β-caroteno em formulados alternativos de baixo custo para alimentação enteral de idosos. Ciênc Tecnol Aliment 31(1):41–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de Tecnología de Alimentos, Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.CONICETBuenos AiresArgentina

Personalised recommendations