Plant Foods for Human Nutrition

, Volume 69, Issue 3, pp 189–195 | Cite as

The Biological Activities and Chemical Composition of Pereskia Species (Cactaceae)—A Review

  • Nícolas de Castro Campos Pinto
  • Elita ScioEmail author
Original Paper


The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.


Pereskia Cactaceae Bioactivity Medicinal food Natural products 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Júnior CV, Bolzani VS, Barreiro EJ (2006) Os produtos naturais e a química medicinal moderna. Quim Nova 29(2):326–337CrossRefGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2012) Natural products as source of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefGoogle Scholar
  3. 3.
    Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837CrossRefGoogle Scholar
  4. 4.
    Bray F, Ren JS, Masuyer E, Ferlay J (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 132:1113–1145CrossRefGoogle Scholar
  5. 5.
    Misra A, Shurivastava U (2013) Obesity and dyslipidemia in South Asians. Nutr 5:2708–2733Google Scholar
  6. 6.
    Ortega-Baes P, Sühring S, Sajama J, Sotola E, Alonso-Pedano M, Bravo S, Godínez-Alvarez H (2010) Diversity and conservation in the cactus family. In: Ramawat KG (ed) Desert plants: biology and biotechnology. Springer, Berlin, pp 157–173CrossRefGoogle Scholar
  7. 7.
    Nobel PS, Hartsock TL (1986) Leaf and stem CO2 uptake in the three subfamilies of the Cactaceae. Plant Physiol 80:913–917CrossRefGoogle Scholar
  8. 8.
    Edwards EJ, Diaz M (2006) Ecological physiology of Pereskia guamacho, a cactus with leaves. Plant Cell Environ 29:247–256CrossRefGoogle Scholar
  9. 9.
    Arias S, Pérez MEV (2006) Diversidad y distribución de las Cactáceas en Guatemala. In: Cano E (ed) Biodiversidad de Guatemala. Universidad del Valle de Guatemala, Guatemala, pp 229–238Google Scholar
  10. 10.
    Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from tnrK/matK and trnL-trnF sequences. Am J Bot 82(2):312–326CrossRefGoogle Scholar
  11. 11.
    Rojas MA, Yanes CV (2000) Cactus seed germination: a review. J Arid Environ 44:85–104CrossRefGoogle Scholar
  12. 12.
    Stintzing FC, Carle R (2005) Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol Nutr Food Res 49:175–194CrossRefGoogle Scholar
  13. 13.
    Castellar MR, Solano F, Obón JM (2012) Betacyanin and other antioxidants production during growth of Opuntia stricta (Haw.) fruits. Plant Foods Hum Nutr 67:337–343CrossRefGoogle Scholar
  14. 14.
    Hahm SW, Park J, Son YS (2010) Opuntia humifusa partitioned extracts inhibit the growth of U87MG humam glioblastoma cells. Plant Foods Hum Nutr 65:247–262CrossRefGoogle Scholar
  15. 15.
    Casado R, Uriarte I, Cavero RY, Calvo MI (2008) LC-PAD determination of mescaline in cactus “peyote” (Lophophora williamsii). Chromatographia 67(7/8):665–667CrossRefGoogle Scholar
  16. 16.
    El Kossori RL, Villaume C, Boustani EE, Sauvaire Y, Méjean L (1998) Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant Foods Hum Nutr 52:263–270CrossRefGoogle Scholar
  17. 17.
    Hernández-Pérez T, Carrillo-López A, Guevara-Lara F, Cruz-Hernández A, Paredes-López O (2005) Biochemical and nutritional characterization of three prickly pear species with different ripening behaviour. Plant Foods Hum Nutr 60:195–200CrossRefGoogle Scholar
  18. 18.
    Fernández-López JA, Almela L, Obón JM, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Foods Hum Nutr 65:253–259CrossRefGoogle Scholar
  19. 19.
    Salt TA, Tocker JE, Adler JH (1987) Dominance of Δ5-sterols in eight species of the Cactaceae. Phytochemistry 26:731–733CrossRefGoogle Scholar
  20. 20.
    Burret F, Lebreton PH, Voirin B (1982) Les aglycones flavoniques de Cactees: distribution, signification. J Nat Prod 45:687–693CrossRefGoogle Scholar
  21. 21.
    Miller JM, Bohm BA (1982) Flavonol and dihydroflavonol glycosides of Echinocereus triglochidiatus var. gurneyi. Phytochemistry 21:951–952CrossRefGoogle Scholar
  22. 22.
    Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, ChichesterGoogle Scholar
  23. 23.
    Leuenberger BE (2008) Pereskia, Maihuenia and Blossfeldia: taxonomic history, updates and notes. Haseltonia 14:54–93CrossRefGoogle Scholar
  24. 24.
    Butterworth CA, Wallace RS (2005) Molecular phylogenetics of the leafy cactus genus Pereskia (Cactaceae). Syst Bot 30(4):800–808CrossRefGoogle Scholar
  25. 25.
    Duarte MR, Hayashi SS (2005) Estudo anatômico de folha e caule de Pereskia aculeata Mill. (Cactaceae). Rev Bras Farmacogn 15(2):103–109CrossRefGoogle Scholar
  26. 26.
    Farago PV, Takeda IJM, Budel JM, Duarte MR (2004) Análise morfo-anatômica de folhas de Pereskia grandifolia Haw. Cactaceae. Lat Am J Pharm 23(3):323–327, ISSN:0326–2383Google Scholar
  27. 27.
    Ogburn RM, Edwards EJ (2009) Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. Am J Bot 96(2):391–408CrossRefGoogle Scholar
  28. 28.
    Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92(7):1177–1188CrossRefGoogle Scholar
  29. 29.
    Pereira OL, Barreto RW, Cavallazzi JRP, Braun U (2007) The mycobiota of the cactus weed Pereskia aculeata in Brazil, with comments on the life-cycle of Uromyces pereskiae. Fungal Divers 25:127–140, ISSN:1560–2745Google Scholar
  30. 30.
    Almeida MEF, Corrêa AD (2012) Utilização de cactáceas do gênero Pereskia na alimentação humana em um município de Minas Gerais. Cienc Rural 42:751–756CrossRefGoogle Scholar
  31. 31.
    Sim KS, Nurestri AMS, Sinniah SK, Kim KH, Norhanom AW (2010) Acute oral toxicity of Pereskia bleo and Pereskia grandifolia in mice. Pharmacogn Mag 6(21):67–70CrossRefGoogle Scholar
  32. 32.
    Yen KP, Abdullah MSB, Syafri S, Raju SK, Yahya CAHC (2013) A preliminary survey on the medicinal uses and effectiveness of Pereskia bleo used by people of three villages in the State of Kelantan, Malaysia. Int J Herb Med 1(3):1–4, ISSN:2321–2187Google Scholar
  33. 33.
    Murilo E, Meléndez-Matínez AJ, Portugal F (2010) Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem 122:167–172CrossRefGoogle Scholar
  34. 34.
    Quiroga R, Meneses L, Bussmann LW (2012) Medical ethnobotany in Huacareta (Chuquisaca, Bolivia). J Ethnobiol Ethnomed 8(29):2–14. doi: 10.1186/1746-4269-8-29 Google Scholar
  35. 35.
    Hajdu Z, Hohmann J (2012) An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J Ethnopharmacol 139:838–857CrossRefGoogle Scholar
  36. 36.
    Uyub AM, Nwachukwu IN, Azlan AA, Fariza SS (2010) In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Ethnobot Res Appl 8:95–106, ISSN:1547–3465Google Scholar
  37. 37.
    Sim KS, Nurestri AMS, Norhanom AW (2010) Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts. Pharmacogn Mag 6(23):248–254CrossRefGoogle Scholar
  38. 38.
    Wahab SIA, Abdul AB, Mohan SM, Al-Zubairi AS, Elhassan MM, Ibrahim MY (2009) Biological activities of Pereskia bleo extracts. Int J Pharm 5(1):71–75CrossRefGoogle Scholar
  39. 39.
    Hassanbaglou B, Hamid AA, Royeeyati AM, Saleh NM, Abdulamir AS, Khatib A, Sabu MC (2012) Antioxidant activity of different extracts from leaves of Pereskia bleo (Cactaceae). J Med Plants Res 6(15):2932–2937. doi: 10.5897/JMPR11.760 Google Scholar
  40. 40.
    Sim KS, Sri Nurestri AM, Norhanom AW (2010) Phenolic content and antioxidant activity of crude and fractionated extracts of Pereskia bleo (Kunth) DC. (Cactaceae). Afr J Pharm Pharmacol 4:193–201, ISSN:1996–0816Google Scholar
  41. 41.
    Hong LL, Meng HE, Radhakrishnan AK (2009) In vitro anti-proliferative and antioxidant activities of stem extracts of Pereskia bleo (Kunth) DC (Cactaceae). Malaysian J Sci 28(3):225–239, ISSN:1394–3065Google Scholar
  42. 42.
    Pinto NCC, Santos RC, Machado DC, Florêncio JR, Fagundes EMZ, Antinarelli LMR, Coimbra ES, Ribeiro A, Scio E (2012) Cytotoxic and antioxidant activity of Pereskia aculeata Miller. Pharmacologyonline 3:63–69, ISSN:1827–8620Google Scholar
  43. 43.
    Philip K, Malek SNA, Sani W, Shin SK, Kumar S, Lai HS, Serm LG, Rahman SNSA (2009) Antimicrobial activity of some medicinal plants from Malaysia. Am J Applied Science 6(8):1613–1617CrossRefGoogle Scholar
  44. 44.
    Abbdewahab SI, Ain NM, Abdul AB, Taha MME, Ibrahim TAT (2009) Energy-dispersive X-ray microanalysis of elements content and antimicrobial properties of Pereskia bleo and Goniothalamus umbrosus. Afr J Biotechnol 8:2375–2378. doi: 10.5897/AJB09.028 Google Scholar
  45. 45.
    Valente MML, Scheinvar LA, Silva GC, Antunes AP, Santos FAL, Oliveira TF, Tappin MRR, Neto FRA, Pereira AS, Carvalhaes SF, Siani AC, Santos RR, Soares ROA, Ferreira EF, Bozza M, Stutz C, Gibaldi D (2007) Evaluation of the antitumor and trypanocidal activities and alkaloid profile in species of Brazilian Cactaceae. Pharmacogn Mag 3(11):167–172, ISSN:0973–1296Google Scholar
  46. 46.
    Nurestri AMS, Sim KS, Norhanom AW (2009) Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw (Cactaceae) leaves. J Biol Sci 9(5):488–493CrossRefGoogle Scholar
  47. 47.
    Karim AK, Sismindari (2012) Anticancer activity of methanol and hexane extract of Pereskia grandifolia Haw leaves against human cervical (HeLa) cells line. In: International conference: research and application on traditional complementary and alternative medicine health care (TCAM), Surokarta, pp 32–37Google Scholar
  48. 48.
    Liew SY, Stanbridge EJ, Yusoff K, Shafee N (2012) Hypoxia affects cellular responses to plant extracts. J Ethnopharmacol 144:453–456CrossRefGoogle Scholar
  49. 49.
    Tan ML, Sulaiman SF, Najimuddin N, Samian MR, Muhammad TST (2005) Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line. J Ethnopharmacol 96:287–294CrossRefGoogle Scholar
  50. 50.
    Malek SNA, Wahab NA, Yaacob H, Shin SK, Lai HS, Serm LG, Rahman SNSA (2008) Cytotoxic activity of Pereskia bleo (cactaceae) against selected human cell lines. Int J Canc Res 4(1):20–27CrossRefGoogle Scholar
  51. 51.
    Er HM, Cheng EH, Radhakrishnan AK (2007) Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae). J Ethnopharmacol 113:448–456CrossRefGoogle Scholar
  52. 52.
    Kazama CC, Uchida DT, Canzi KN, Souza P, Crestani S, Junior AG, Junior AL (2012) Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae). J Ethopharmacol 144:86–93CrossRefGoogle Scholar
  53. 53.
    Abdul-Wahab IR, Guilhon CC, Fernandes PD, Boylan F (2012) Anti-nociceptive activity of Pereskia bleo Kunth (Cactaceae) leaves extracts. J Ethnopharmacol 144:741–746CrossRefGoogle Scholar
  54. 54.
    Guilhon CC, Wahab IRA, Boylan F, Fernandes PD (2012) Evaluation of antinociceptive activity of Pereskia bleo Kunth. Planta Med 78:1098CrossRefGoogle Scholar
  55. 55.
    Agostini-Costa TS, Wondracek DC, Rocha WS, Silva DB (2012) Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller. Rev Bras Frutic 34(1):234–238CrossRefGoogle Scholar
  56. 56.
    Malek SNA, Shin SK, Wahab NA, Yaacob H (2009) Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 14:1713–1724CrossRefGoogle Scholar
  57. 57.
    Ling WH, Jones PJH (1995) Minireview dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57(3):195–206CrossRefGoogle Scholar
  58. 58.
    Filho AW, Filho VC, Olinger L, Souza MM (2008) Quercetin: further investigation of its antinociceptive properties and mechanism of action. Arch Pharm Res 31:713–721CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Hays A, Noblett A, Thapa M, Hua DH, Hagenbuch B (2013) Transport by OATP1B1 and OATP1B3 enhances the cytotoxicity of epigallocatechin 3‑O‑gallate and several quercetin derivatives. J Nat Prod 76:368–373CrossRefGoogle Scholar
  60. 60.
    Metzing D, Kiesling R (2008) The study of cactus evolution: the pre-DNA era. Haseltonia 14:6–25CrossRefGoogle Scholar
  61. 61.
    Gupta RS, Sharma R, Sharma A, Chaudhudery R, Bhatnager AK, Dobhal MP, Joshi YC, Sharma MC (2002) Antispermatogenic effect and chemical investigation of Opuntia dillenii. Pharm Biol 40:411–415CrossRefGoogle Scholar
  62. 62.
    Takeiti CY, Antonio GC, Motta EMP, Collares-Queiroz FP, Park KJ (2009) Nutritive evaluation of a non-conventional leafy vegetable (Pereskia aculeata Miller). Int J Food Sci Nutr 60:148–160CrossRefGoogle Scholar
  63. 63.
    Mercê ANR, Landaluze JS, Mangrich AS, Szpoganicz B, Sierakowski MR (2001) Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+. Bioresource Technol 76:29–37CrossRefGoogle Scholar
  64. 64.
    Girão LVC, Filho JCS, Pinto JEBP, Bertolucci SKV (2003) Avaliação da composição bromatológica de ora-pro-nóbis. In: Anais Congresso Brasileiro de Olericultura, Associação Brasileira de Horticultura, Recife, pp 43Google Scholar
  65. 65.
    Oliveira DCS, Wobeto C, Zanuzo MR, Severgnini C (2013) Composição mineral e teor de ácido ascórbico nas folhas de quatro espécies olerícolas não-convencionais. Hortic Bras 31:472–475CrossRefGoogle Scholar
  66. 66.
    Morton JF (1987) Barbados gooseberry. In: Morton JF (ed) Fruits of warm climates. Florida Flair Books, Miami, pp 349–351Google Scholar
  67. 67.
    Sierakowski MR (1990) Location of O-acetyl groups in the heteropolysaccharide of the cactus Pereskia aculeata. Carbohydr Res 201:277–284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory of Bioactive Natural Products. Department of BiochemistryInstitute of Biological Science of Federal University of Juiz de ForaJuiz de ForaBrazil

Personalised recommendations