Plant Foods for Human Nutrition

, Volume 68, Issue 2, pp 113–117

Pre-harvest Methyl Jasmonate Treatment Enhances Cauliflower Chemoprotective Attributes Without a Loss in Postharvest Quality

  • Kang Mo Ku
  • Jeong-Hee Choi
  • Mosbah M. Kushad
  • Elizabeth H. Jeffery
  • John A. Juvik
Original Paper

Abstract

Methyl jasmonate (MeJA) treatment can significantly increase glucosinolate (GS) concentrations in Brassica vegetables and potentially enhance anticancer bioactivity. Although MeJA treatment may promote ethylene biosynthesis, which can be detrimental to postharvest quality, there are no previous reports of its effect on cauliflower postharvest quality. To address this, cauliflower curds in field plots were sprayed with either 0.1 % Triton X-100 (control) or 500 μM MeJA solutions four days prior to harvest, then stored at 4 °C. Tissue subsamples were collected after 0, 10, 20, and 30 days of postharvest storage and assayed for visual color change, ethylene production, GS concentrations, and extract quinone reductase inductive activity. MeJA treatment increased curd GS concentrations of glucoraphanin, glucobrassicin, and neoglucobrassicin by 1.5, 2.4, and 4.6-fold over controls, respectively. MeJA treated cauliflower showed significantly higher quinone reductase activity, a biomarker for anticancer bioactivity, without reducing visual color and postharvest quality for 10 days at 4 °C storage.

Keywords

Brassica oleracea L. Methyl jasmonate Quinone reductase activity Postharvest storage Glucosinolates 

References

  1. 1.
    van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168CrossRefGoogle Scholar
  2. 2.
    Cuendet M, Oteham CP, Moon RC, Pezzuto JM (2006) Quinone reductase induction as a biomarker for cancer chemoprevention. J Nat Prod 69(3):460–463CrossRefGoogle Scholar
  3. 3.
    Kim HS, Juvik JA (2011) Effect of selenium fertilization and methyl jasmonate treatment on glucosinolate accumulation in broccoli florets. J Am Soc Hort Sci 136(4):239–246Google Scholar
  4. 4.
    Singh G, Kawatra A, Sehgal S (2001) Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods Hum Nutr 56(4):359–364. doi:10.1023/a:1011873119620 CrossRefGoogle Scholar
  5. 5.
    Dixon GR (2007) Vegetable Brassicas and related Crucifers. CABI Pub.Google Scholar
  6. 6.
    Watanabe K, Kamo T, Nishikawa F, Hyodo H (2000) Effect of methyl jasmonate on senescence of broccoli florets. J Japan Soc Hort Sci 69(5):605–610. doi:10.2503/jjshs.69.605 Google Scholar
  7. 7.
    Brown AF, Yousef GG, Jeffery EH, Klein BP, Wallig MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127(5):807–813Google Scholar
  8. 8.
    Prochaska HJ, Santamaria AB (1988) Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem 169(2):328–336CrossRefGoogle Scholar
  9. 9.
    Fritz VA, Justen VL, Bode AM, Schuster T, Wang M (2010) Glucosinolate enhancement in cabbage induced by jasmonic acid application. Hortscience 45(8):1188–1191Google Scholar
  10. 10.
    Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry (Oxford) 35(2):301–305CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89(6):2399–2403Google Scholar
  12. 12.
    Zhu CY, Loft S (2003) Effect of chemopreventive compounds from Brassica vegetables on NAD(P)H:quinone reductase and induction of DNA strand breaks in murine hepa1c1c7 cells. Food Chem Toxicol 41(4):455–462CrossRefGoogle Scholar
  13. 13.
    Neave AS, Sarup SM, Seidelin M, Duus F, Vang O (2005) Characterization of the N-methoxyindole-3-carbinol (NI3C)‚ induced cell cycle arrest in human colon cancer cell lines. Toxicol Sci 83(1):126–135CrossRefGoogle Scholar
  14. 14.
    Bitir B, Erginer M, Engin E, Vang O (2011) Determination combinatory effect of indole 3 carbinol and N-methoxy indole-3-carbinol on cell proliferation in HCT 116 cell line. http://rudar.ruc.dk/handle/1800/6491. Accessed 16 Nov 2012
  15. 15.
    Haack M, Lowinger M, Lippmann D, Kipp A, Pagnotta E, Iori R, Monien BH, Glatt H, Brauer MN, Wessjohann LA, Brigelius-Flohe R (2010) Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products. Biol Chem 391(11):1281–1293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kang Mo Ku
    • 1
  • Jeong-Hee Choi
    • 1
    • 3
  • Mosbah M. Kushad
    • 1
  • Elizabeth H. Jeffery
    • 2
  • John A. Juvik
    • 1
  1. 1.Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Food Science and Human NutritionUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Korea Food Research InstituteGyeonggi-DoSouth Korea

Personalised recommendations