Advertisement

Plant Foods for Human Nutrition

, Volume 68, Issue 2, pp 207–212 | Cite as

Cooked Common Beans (Phaseolus vulgaris) Protect Against β-cell Damage in Streptozotocin-Induced Diabetic Rats

  • Diego Hernández-Saavedra
  • Magdalena Mendoza-Sánchez
  • Hebert L. Hernández-Montiel
  • Horacio S. Guzmán-Maldonado
  • Guadalupe F. Loarca-Piña
  • Luis M. SalgadoEmail author
  • Rosalía Reynoso-CamachoEmail author
Original Paper

Abstract

Diabetes is a disease characterized by a hyperglycemic stage that leads to a chronic inflammatory state. We evaluated the in vivo effect of a diet supplemented with 25 % cooked black bean cultivar Negro 8025 (N8025) flour in streptozotocin-induced diabetic rats. The effect was assessed before (preventive-treatment) and after (treatment) the onset of diabetes. There is a significant decrease of total phenolic, tannins and anthocyanins content after cooking, and the concentration of most of the single phenols analyzed are only slightly decreased. The treatment group showed a significant reduction of glucose (22.8 %), triglycerides (21.9 %), total cholesterol (29.9 %) and LDL (56.1 %) that correlates with a protection of pancreatic ß-cells. The diet with N8025 flour before the induction of diabetes did not exert a protective effect (glucose levels are similar to the diabetic control) but they have low levels of total cholesterol (47.5 %) and LDL (56.1 %). The preventive-treatment group did not inhibit the increase of TNF-α and IL-1β, whereas the treatment group did, compared to the diabetic control. Therefore, N8025 bean supplementation can be recommended to control diabetes.

Keywords

Bean Phenolic compounds Diabetes Pancreatic damage Cytokines 

Abbreviations

HDL

High density lipoprotein

IL-1β

Interleukin-1β

LDL

Low density lipoprotein

N8025

Black bean 8025

ROS

Reactive oxygen species

STZ

Streptozotocin

TA

Total anthocyanins

TC

Total cholesterol

TAG

Triglycerides

TNF-α

Tumor necrosis factor–α

TPC

Total phenolic content

TT

Total tannins

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11130_2013_353_MOESM1_ESM.doc (33 kb)
ESM 1 (DOC 33 kb)
11130_2013_353_MOESM2_ESM.doc (42 kb)
ESM 2 (DOC 42 kb)
11130_2013_353_MOESM3_ESM.doc (76 kb)
ESM 3 (DOC 75 kb)

References

  1. 1.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefGoogle Scholar
  2. 2.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622CrossRefGoogle Scholar
  3. 3.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742CrossRefGoogle Scholar
  4. 4.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress and diabetes. J Clin Invest 115:1111–1119Google Scholar
  5. 5.
    Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze M (2006) Serum Il-1beta, Il-2, and l-6 in insulin-dependent diabetic children. Mediators Inflamm 2006:1–6CrossRefGoogle Scholar
  6. 6.
    Petlevski R, Hadzija M, Slijepsevic M (2001) Effect of “antidiabetics” herbal preparation on serum glucose and fructosamine in NOD mice. J Ethnopharmacol 75:181–184CrossRefGoogle Scholar
  7. 7.
    Venkateswaran S, Pari L (2002) Antioxidant effect of Phaseolus vulgaris in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr 11:206–209CrossRefGoogle Scholar
  8. 8.
    Pari L, Venkateswaran S (2003) Effect of an aqueous extract of Phaseolus vulgaris on plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes. Pharmazie 58:916–925Google Scholar
  9. 9.
    Diaz-Batalla L, Widholm JM, Fahey GC Jr, Castaño-Tostado E, Paredes-López O (2006) Chemical components with health implications in wild and cultivated mexican common bean seeds (Phaseolus vulgaris L.). J Agric Food Chem 54:2045–2052CrossRefGoogle Scholar
  10. 10.
    Obiro W, Zhang T, Jiang B (2008) The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr 100:1–12CrossRefGoogle Scholar
  11. 11.
    de Olivera A, Queiroz K, Helbig E, Reis S, Carraro F (2001) The domestic processing of the common bean resulted in a reduction in the phytates and tannins antinutritional factors, in the starch content and in the raffinose, stachiose and verbascose flatulence factors. Arch Latinoam Nutr 51:276–283Google Scholar
  12. 12.
    Xu B, Chang S (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764CrossRefGoogle Scholar
  13. 13.
    Singleton VL, Orthofer R, Lamuela-Reventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of the Folin-Ciocalteu reagent. Methods Enzymol 299C:152–178CrossRefGoogle Scholar
  14. 14.
    Deshpande SS, Cheryan M (1987) Determination of phenolic compounds of dry beans using vanillin, redox and precipitation assays. J Agric Food Chem 52:332–334Google Scholar
  15. 15.
    Fuleki T, Francis F (1968) Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33:72–78CrossRefGoogle Scholar
  16. 16.
    Ramamurthy MS, Maiti B, Thomas PY, Nair M (1992) High performance liquid chromatography determination of phenolic acids in potato tubers (Solanum tuberosum) during wound healing. J Agric Food Chem 40:569–572CrossRefGoogle Scholar
  17. 17.
    Aparicio-Fernández X, Manzo-Bonilla L, Loarca-Piña G (2005) Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans (Phaseolus vulgaris) against aflatoxin B1. J Food Sci 70:73–78CrossRefGoogle Scholar
  18. 18.
    Gálvez-Ranilla L, Genovese M, Lajolo F (2009) Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. J Agric Food Chem 57:5734–5742CrossRefGoogle Scholar
  19. 19.
    Krippeit-Drews P, Krämer C, Welker S, Lang F, Ammon H, Drews G (1999) Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic β-cells. J Physiol 514:471–481CrossRefGoogle Scholar
  20. 20.
    Lapidot T, Walker M, Kanner J (2002) Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. J Agric Food Chem 50:7220–7225CrossRefGoogle Scholar
  21. 21.
    Bolzán A, Bianchi M (2002) Genotoxicity of streptozotocin. Mutat Res 512:121–134CrossRefGoogle Scholar
  22. 22.
    Whiting PH, Middleton B, Thomas N, Hawthorne J (1982) Studies on a stable, mild diabetes induced by streptozotocin in rats. Br J Exp Pathol 63:408–413Google Scholar
  23. 23.
    Eliakim-Ikechukwu C, Obri A (2009) Histological changes in the pancreas following administration of ethanolic extract of Alchornea cordifolia leaf in alloxan- induced diabetic wistar rats. Niger J Physiol Sci 24:153–155Google Scholar
  24. 24.
    Holvoet P, De Keyzer D, Jacobs D Jr (2009) Oxidized LDL and the metabolic syndrome. Future Lipidol 3:637–649CrossRefGoogle Scholar
  25. 25.
    Marzolo M, Amigo L, Nervi F (1993) Hepatic production of very low density lipoprotein, catabolism of low density lipoprotein, biliary lipid secretion, and bile salt synthesis in rats fed a bean (Phaseolus vulgaris) diet. J Lipid Res 34:807–814Google Scholar
  26. 26.
    Yu T, Ahnb H, Shena T, Yoona K, Jangc H, Leed Y, Yang H, Kim J, Kim C, Han M, Cha S, Kim T, Kim S, Leeh J, Cho J (2011) Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J Ethnopharmacol 137:1197–1206CrossRefGoogle Scholar
  27. 27.
    Oomah BD, Corbé A, Balasubramanian P (2010) Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J Agric Food Chem 58:8225–8230CrossRefGoogle Scholar
  28. 28.
    Okada Y, Okada M, Sagesaka Y (2010) Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes. Plant Foods Hum Nutr 65:225–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Diego Hernández-Saavedra
    • 1
  • Magdalena Mendoza-Sánchez
    • 1
  • Hebert L. Hernández-Montiel
    • 2
  • Horacio S. Guzmán-Maldonado
    • 3
  • Guadalupe F. Loarca-Piña
    • 1
  • Luis M. Salgado
    • 4
    Email author
  • Rosalía Reynoso-Camacho
    • 1
    Email author
  1. 1.Research and Graduate Studies in Food Science, School of ChemistryUAQSantiago de QuerétaroMéxico
  2. 2.Department of Biomedical Research, School of MedicineUAQSantiago de QuerétaroMéxico
  3. 3.Campo Experimental Bajío (CEBAJ-INIFAP)CelayaMéxico
  4. 4.CICATA, Instituto Politecnico NacionalSantiago de QuerétaroMéxico

Personalised recommendations