Plant Foods for Human Nutrition

, Volume 67, Issue 4, pp 430–441 | Cite as

Impact of Thermal Processing on Legume Allergens

  • Alok Kumar Verma
  • Sandeep Kumar
  • Mukul Das
  • Premendra D. Dwivedi
Original Paper

Abstract

Food induced allergic manifestations are reported from several parts of the world. Food proteins exert their allergenic potential by absorption through the gastrointestinal tract and can even induce life threatening anaphylaxis reactions. Among all food allergens, legume allergens play an important role in induction of allergy because legumes are a major source of protein for vegetarians. Most of the legumes are cooked either by boiling, roasting or frying before consumption, which can be considered a form of thermal treatment. Thermal processing may also include autoclaving, microwave heating, blanching, pasteurization, canning, or steaming. Thermal processing of legumes may reduce, eliminate or enhance the allergenic potential of a respective legume. In most of the cases, minimization of allergenic potential on thermal treatment has generally been reported. Thus, thermal processing can be considered an important tool by indirectly prevent allergenicity in susceptible individuals, thereby reducing treatment costs and reducing industry/office/school absence in case of working population/school going children. The present review attempts to explore various possibilities of reducing or eliminating allergenicity of leguminous food using different methods of thermal processing. Further, this review summarizes different methods of food processing, major legumes and their predominant allergenic proteins, thermal treatment and its relation with antigenicity, effect of thermal processing on legume allergens; also suggests a path that may be taken for future research to reduce the allergenicity using conventional/nonconventional methods.

Keywords

Thermal processing Legume allergens Neoantigen. IgE-binding proteins 

Abbreviations

DIC

Instantaneous controlled pressure-drop (detente instantanee controlee)

SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

MW

Molecular weight

Notes

Acknowledgments

Thanks are due to SIP-08 of Council of Scientific and Industrial Research (CSIR), New Delhi for financial support. We are thankful to Sakshi Mishra for editorial assistance. Alok Kumar Verma and Sandeep Kumar are thankful to CSIR, New Delhi for the award of their Senior Research Fellowships. This is CSIR-IITR manuscript # 3029.

Conflicts of interest

The authors have declared no conflict of interest.

References

  1. 1.
    Buck J, Hattersley S, Kimber I (2010) Food allergy – science and policy needs – The UK Food Standards Agency Research Programme. Toxicology 278:319–325CrossRefGoogle Scholar
  2. 2.
    Kumar S, Verma AK, Das M, Dwivedi PD (2012) Allergenic diversity among plant and animal food proteins. Food Rev Int 28:277–298Google Scholar
  3. 3.
    Huang F, Chawla K, Järvinen KM, Nowak-Węgrzyn A (2012) Anaphylaxis in a New York City pediatric emergency department: Triggers, treatments, and outcomes. J Allergy Clin Immunol 129:162–168CrossRefGoogle Scholar
  4. 4.
    Verma AK, Kumar S, Das M, Dwivedi PD (2012) A comprehensive review of legume allergy. Clin Rev Allergy Immunol. doi:10.1007/s12016-012-8310-6
  5. 5.
    Misra A, Kumar R, Mishra V, Chaudhari BP, Tripathi A, Das M, Dwivedi PD (2010) Partial characterization of red gram (Cajanus cajan L. Millsp) polypeptides recognized by patients exhibiting rhinitis and bronchial asthma. Food Chem Toxicol 48:2725–2736CrossRefGoogle Scholar
  6. 6.
    Misra A, Kumar R, Mishra V, Chaudhari BP, Raisuddin S, Das M, Dwivedi PD (2011) Potential allergens of green gram (Vigna radiata L. Millsp) identified as members of cupin superfamily and seed albumin. Clin Exp Allergy 41:1157–1168CrossRefGoogle Scholar
  7. 7.
    Kumar S, Verma AK, Misra A, Tripathi A, Chaudhari BP, Prasad R, Jain SK, Das M, Dwivedi PD (2011) Allergenic responses of red kidney bean (Phaseolus vulgaris cv chitra) polypeptides in BALB/c mice recognized by bronchial asthma and allergic rhinitis patients. Food Res Int 44:2868–2879CrossRefGoogle Scholar
  8. 8.
    Verma AK, Kumar S, Tripathi A, Chaudhari BP, Das M, Dwivedi PD (2012) Chickpea (Cicer arietinum) proteins induce allergic responses in nasobronchial allergic patients and BALB/c mice. Toxicol Lett 210:24–33CrossRefGoogle Scholar
  9. 9.
    Chung SY, Reed S (2011) Removing peanut allergens by tannic acid. Food Chem 134:1468–1473Google Scholar
  10. 10.
    Riascos JJ, Weissinger AK, Weissinger SM, Burks AW (2010) Hypoallergenic legume crops and food allergy: Factors affecting feasibility and risk. J Agric Food Chem 58:20–27CrossRefGoogle Scholar
  11. 11.
    Yamanishi R, Tsuji H, Bando N, Yamada Y, Nadaoka Y, Huang T, Nishikawa K, Emoto S, Ogawa T (1996) Reduction of the allergenicity of soybean by treatment with proteases. J Nutr Sci Vitaminol 42:581–587CrossRefGoogle Scholar
  12. 12.
    Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43CrossRefGoogle Scholar
  13. 13.
    Maleki SJ (2004) Food processing: Effects on allergenicity. Curr Opin Allergy Clin Immunol 4:241–245CrossRefGoogle Scholar
  14. 14.
    Cuadrado C, Cabanillas B, Pedrosa MM, Varela A, Guillamón E, Muzquiz M, Crespo JF, Rodriguez J, Burbano C (2009) Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Mol Nutr Food Res 53:1462–1468CrossRefGoogle Scholar
  15. 15.
    Maleki SJ, Chung SY, Champagne ET, Raufman JP (2000) The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol 106:763–768CrossRefGoogle Scholar
  16. 16.
    Dube M, Zunker K, Neidhart S, Carle R, Steinhart H, Paschke A (2004) Effect of technological processing on the allergenicity of mangoes (Mangifera indica L). J Agric Food Chem 52:3938–3945CrossRefGoogle Scholar
  17. 17.
    Abdel Nabey AA, Damir AA (1990) Changes in some nutrients of fenugreek (Trigonella Foenum graecum L.) seeds during water boiling. Plant Foods Hum Nutr 40:267–274CrossRefGoogle Scholar
  18. 18.
    Girigowda K, Prashanth SJ, Mulimani VH (2005) Oligosaccharins of black gram (Vigna mungo L.) as affected by processing methods. Plant Foods Hum Nutr 60:173–180CrossRefGoogle Scholar
  19. 19.
    Singh U (1988) Antinutritional factors of chickpea and pigeon pea and their removal by processing. Plant Foods Hum Nutr 38:251–261CrossRefGoogle Scholar
  20. 20.
    Bishnoi S, Khetarpaul N, Yadav RK (1994) Effect of domestic processing and cooking methods on phytic acid and polyphenol contents of pea cultivars (Pisum sativum). Plant Foods Hum Nutr 45:381–388CrossRefGoogle Scholar
  21. 21.
    Alvarez-Alvarez J, Guillamón E, Crespo JF, Cuadrado C, Burbano C, Rodríguez J, Fernández C, Muzquiz M (2005) Effects of extrusion, boiling, autoclaving, and microwave heating on lupin allergenicity. J Agric Food Chem 53:1294–1298CrossRefGoogle Scholar
  22. 22.
    Kilara A, Harwalkar VR (1996) Denaturation. In: Nakai S, Modler HW (eds) Food proteins: properties and characterisation. VCH, New York, pp 71–165Google Scholar
  23. 23.
    Marin ML, Selgas D, Pin C, Casas C (1992) Relationships of hydrophobicity and antigenic activity to fat-binding capacity of heat denatured meat proteins. J Sci Food Agric 60:505–508CrossRefGoogle Scholar
  24. 24.
    Clare Mills EN, Sancho AI, Rigby NM, Jenkins JA, Mackie AR (2009) Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 53:963–969CrossRefGoogle Scholar
  25. 25.
    Sathe SK, Sharma GM (2009) Effects of food processing on food allergens. Mol Nutr Food Res 53:970–978CrossRefGoogle Scholar
  26. 26.
    Kasera R, Singh AB, Kumar R, Lavasa S, Prasad KN, Arora N (2012) Effect of thermal processing and γ-irradiation on allergenicity of legume proteins. Food Chem Toxicol 50:3456–3461CrossRefGoogle Scholar
  27. 27.
    Shea KM (2000) Technical report: Irradiation of food. Committee on Environmental Health. Pediatrics 106:1505–1510CrossRefGoogle Scholar
  28. 28.
    Persson PO, Londahl G (1993) Freezing technology. In: Mallett CP (ed), Frozen Food Technology. Blackie Academic & Professional, Glasgow, pp 20–58CrossRefGoogle Scholar
  29. 29.
    Bonazzi C, Dumoulin E (2011) Quality changes in food materials as influenced by drying processes. In: Tsotsas E, Mujumdar AS (eds), Modern Drying Technology, Volume 3: Product Quality and Formulation, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–20CrossRefGoogle Scholar
  30. 30.
    Motarjemi Y (2002) Impact of small scale fermentation technology on food safety in developing countries. Int J Food Microbiol 75:213–229CrossRefGoogle Scholar
  31. 31.
    Clemente A, Vioque J, Sanchez-Vioque R, Pedroche J, Millan F (1999) Production of extensive chickpea Cicer arietinum L, protein hydrolysates with reduced antigenic activity. J Agric Food Chem 47:3776–3781CrossRefGoogle Scholar
  32. 32.
    Cabanillas B, Pedrosa MM, Rodrıguez J, Gonzalez A, Muzquiz M, Cuadrado C, Crespo JF, Burbano C (2010) Effects of enzymatic hydrolysis on lentil allergenicity. Mol Nutr Food Res 54:1266–1272CrossRefGoogle Scholar
  33. 33.
    Richardson PS (2001) Thermal technologies in food processing. CRC Press, MassachusettsCrossRefGoogle Scholar
  34. 34.
    Donald B (1983) Protein composition of grains of the leguminosae. Plant Foods Hum Nutr 32:247–252CrossRefGoogle Scholar
  35. 35.
    Monti LM, Grillo S (1983) Legume seed improvement for protein content and quality. Plant Foods Hum Nutr 32:253–266CrossRefGoogle Scholar
  36. 36.
    Dalal I, Binson I, Reifen R, Amitai Z, Shohat T, Rahmani S, Levine A, Ballin A, Somekh E (2002) Food allergy is a matter of geography after all: Sesame as a major cause of severe IgE-mediated food allergic reactions among infants and young children in Israel. Allergy 57:362–365CrossRefGoogle Scholar
  37. 37.
    Crespo JF, Rodriguez J (2003) Food allergy in adulthood. Allergy 58:98–113CrossRefGoogle Scholar
  38. 38.
    Novembre E, Moriondo M, Bernardini R, Azzari C, Rossi ME, Vierucci A (1999) Lupin allergy in a child. J Allergy Clin Immunol 103:1214–1216CrossRefGoogle Scholar
  39. 39.
    Kumari D, Kumar R, Sridhara S, Arora N, Gaur SN, Singh BP (2006) Sensitization to black gram in patients with bronchial asthma and rhinitis: Clinical evaluation and characterization of allergens. Allergy 61:104–110CrossRefGoogle Scholar
  40. 40.
    Calvani M, Cardinale F, Martelli A, Muraro A, Pucci N, Savino F, Zappalà D, Panetta V (2011) Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr Allergy Immunol 22:813–819CrossRefGoogle Scholar
  41. 41.
    Misra A, Prasad R, Das M, Dwivedi PD (2008) Prevalence of legume sensitization in patients with naso-bronchial allergy. Immunopharmacol Immunotoxicol 30:529–542CrossRefGoogle Scholar
  42. 42.
    Ballabio C, Magni C, Restani P, Mottini M, Fiocchi A, Tedeschi G, Duranti M (2010) IgE-mediated cross-reactivity among leguminous seed proteins in peanut allergic children. Plant Foods Hum Nutr 65:396–402CrossRefGoogle Scholar
  43. 43.
    Ibanez MD, Martinez M, Sanchez JJ, Fernandez-Caldas E (2003) Legume: Cross-reactivity. Allergol Immunopathol 31:151–161Google Scholar
  44. 44.
    Barnett D, Bonham B, Howden ME (1987) Allergenic cross-reactions among legume foods—an in vitro study. J Allergy Clin Immunol 79:433–438CrossRefGoogle Scholar
  45. 45.
    Pastorello EA, Incorvaia C, Pravettoni V, Ortolani C (1997) Cross reactions in food allergy. Clin Rev Allergy Immunol 15:415–427CrossRefGoogle Scholar
  46. 46.
    de Leon MP, Drew AC, Glaspole IN, Suphioglu C, O’Hehir RE, Rolland JM (2007) IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Mol Immunol 44:463–471CrossRefGoogle Scholar
  47. 47.
    Vieths S, Frank E, Scheurer S, Meyer HE, Hrazdina G, Haustein D (1998) Characterization of a new IgE-binding 35-kDa protein from birch pollen with cross-reacting homologues in various plant foods. Scand J Immunol 47:263–272CrossRefGoogle Scholar
  48. 48.
    Weber RW (2001) Cross-reactivity of plant and animal allergens. Clin Rev Allergy Immunol 21:153–202CrossRefGoogle Scholar
  49. 49.
    Astwood JD, Leach JN, Fuchs RL (1996) Stability of food allergens to digestion in vitro. Nat Biotechnol 14:1269–1273CrossRefGoogle Scholar
  50. 50.
    Herman RA, Korjagin VA, Schafer BW (2005) Quantitative measurement of protein digestion in simulated gastric fluid. Regul Toxicol Pharmacol 41:175–184CrossRefGoogle Scholar
  51. 51.
    Mills EN, Sancho AI, Rigby NM, Jenkins JA, Mackie AR (2009) Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 53:963–969CrossRefGoogle Scholar
  52. 52.
    Grimshaw KE, King RM, Nordlee JA, Hefle SL, Warner JO, Hourihane JO (2003) Presentation of allergen in different food preparations affects the nature of the allergic reaction—A case series. Clin Exp Allergy 33:1581–1585CrossRefGoogle Scholar
  53. 53.
    Davis PJ, Williams SC (1998) Protein modification by thermal processing. Allergy 53:102–105CrossRefGoogle Scholar
  54. 54.
    Chung SY, Butts CL, Maleki SJ, Champagne ET (2003) Linking peanut allergenicity to the processes of maturation, curing, and roasting. J Agric Food Chem 51:4273–4277CrossRefGoogle Scholar
  55. 55.
    Jood S, Chauhan BM, Kapoor AC (1989) Protein digestibility (in vitro) of chickpea and black gram seeds as affected by domestic processing and cooking. Plant Foods Hum Nutr 39:149–154CrossRefGoogle Scholar
  56. 56.
    Schmitt DA, Nesbit JB, Hurlburt BK, Cheng H, Maleki SJ (2010) Processing can alter the properties of peanut extract preparations. J Agric Food Chem 58:1138–1143CrossRefGoogle Scholar
  57. 57.
    Kopper RA, Odum NJ, Sen M, Helm RM, Stanley JS, Burks AW (2005) Peanut protein allergens: The effect of roasting on solubility and allergenicity. Int Arch Allergy Immunol 136:16–22CrossRefGoogle Scholar
  58. 58.
    Maleki SJ, Yamaki K, Lewenson C, Galeano M, Champagne ET, Shinohara K (2004) Roasting may alter the IgE binding epitopes and sensitizing ability of peanut allergens. J Allergy Clin Immunol 113:S154CrossRefGoogle Scholar
  59. 59.
    Damame SV, Chavan JK, Kadam SS (1990) Effects of roasting and storage on proteins and oil in peanut kernels. Plant Foods Hum Nutr 40:143–148CrossRefGoogle Scholar
  60. 60.
    Davis PJ, Smales CM, James DC (2001) How can thermal processing modify the antigenicity of proteins? Allergy 56:56–60CrossRefGoogle Scholar
  61. 61.
    Kumar S, Verma AK, Das M, Dwivedi PD (2012) Molecular mechanism of IgE mediated food allergy. Int Immunopharmacol. doi:10.1016/j.intimp.2012.05.018
  62. 62.
    van Regenmortel MHV (1992) Molecular dissection of protein antigens. In: van Regenmortel MHV (ed), Structure of Antigens, vol 1. CRC Press Inc, Massachusetts, pp 1–28Google Scholar
  63. 63.
    Wal JM (2003) Thermal processing and allergenicity of foods. Allergy 58:727–729CrossRefGoogle Scholar
  64. 64.
    Besler M, Steinhart H, Paschke A (2001) Stability of food allergens and allergenicity of processed foods. J Chromatogr B: Biomed Sci Appl 756:207–228CrossRefGoogle Scholar
  65. 65.
    Singh B, Singh U (1991) Peanut as a source of protein for human foods. Plant Foods Hum Nutr 41:165–177CrossRefGoogle Scholar
  66. 66.
    Sicherer SH (2002) Clinical update on peanut allergy. Ann Allergy Asthma Immunol 88:350–361CrossRefGoogle Scholar
  67. 67.
    Burks AW, Williams LW, Helm RM, Connaughton C, Cockrell G, O’Brien T (1991) Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. J Allergy Clin Immunol 88:172–179CrossRefGoogle Scholar
  68. 68.
    Burks AW, Williams LW, Thresher W, Connaughton C, Cockrell G, Helm RM (1992) Allergenicity of peanut and soybean extracts altered by chemical or thermal denaturation in patients with atopic dermatitis and positive food challenges. J Allergy Clin Immunol 90:889–897CrossRefGoogle Scholar
  69. 69.
    Mondoulet L, Paty E, Drumare MF, Ah-Leung S, Scheinmann P, Willemot RM, Wal JM, Bernard H (2005) Influence of thermal processing on the allergenicity of peanut proteins. J Agric Food Chem 53:4547–4553CrossRefGoogle Scholar
  70. 70.
    Maleki SJ, Viquez O, Jacks T, Dodo H, Champagne ET, Chung SY, Landry SJ (2003) The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol 112:190–195CrossRefGoogle Scholar
  71. 71.
    Maleki SJ, Hurlburt BK (2004) Structural and functional alterations in major peanut allergens caused by thermal processing. J AOAC Int 87:1475–1479Google Scholar
  72. 72.
    Cabanillas B, Maleki SJ, Rodriguez J, Burbano C, Muzquiz M, Jimenez M, Pedrosa M, Cuadrado C, Crespo J (2011) Heat and pressure treatments effects on peanut allergenicity. Food Chem 132:360–366CrossRefGoogle Scholar
  73. 73.
    Cuadrado C, Cabanillas B, Pedrosa MM, Muzquiz M, Haddad J, Allaf K, Rodriguez J, Crespo JF, Burbano (2011) Effect of instant controlled pressure drop on IgE antibody reactivity to peanut, lentil, chickpea and soybean proteins. Int Arch Allergy Immunol 156:397–404CrossRefGoogle Scholar
  74. 74.
    Beyer K, Morrow E, Li XM, Bardina L, Bannon GA, Burks AW, Sampson HA (2001) Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 107:1077–1081CrossRefGoogle Scholar
  75. 75.
    Kumari D, Arora N, Kasera R, Sridhara S, Kumar R, Singh BP (2012) Isolation and characterization of a 28 kDa major allergen from blackgram (Phaseolus mungo). Immunobiology 217:895–904CrossRefGoogle Scholar
  76. 76.
    Zia-Ur-rehman, Shah WH (2001) Tannin contents and protein digestibility of black grams (Vigna mungo) after soaking and cooking. Plant Foods Hum Nutr 56:265–273CrossRefGoogle Scholar
  77. 77.
    López-Torrejón G, Salcedo G, Martín-Esteban M, Díaz-Perales A, Pascual CY, Sánchez-Monge R (2003) Len c 1, a major allergen and vicilin from lentil seeds: Protein isolation and cDNA cloning. J Allergy Clin Immunol 112:1208–1215CrossRefGoogle Scholar
  78. 78.
    Sanchez-Monge R, Pascual CY, Dıaz-Perales A, Fernandez-Crespo J, Martín-Esteban M, Salcedo G (2000) Isolation and characterization of relevant allergens from boiled lentils. J Allergy Clin Immunol 106:955–961CrossRefGoogle Scholar
  79. 79.
    International Union of Immunological Societies Allergen Nomenclature (2007) IUIS official list http://www.allergen.org/List.htm
  80. 80.
    Akkerdaas J, Finkina EI, Balandin SV, Santos Magadán S, Knulst A, Fernandez-Rivas M, Asero R, van Ree R, Ovchinnikova TV (2012) Lentil (Lens culinaris) Lipid transfer protein Len c 3: a novel legume allergen. Int Arch Allergy Immunol 157:51–57CrossRefGoogle Scholar
  81. 81.
    Matheu V, De Barrio M, Sierra Z, Gracia-Vara MT, Tornero P, Baeza ML (1999) Lupine-induced anaphylaxis. Ann Allergy Asthma Immunol 83:406–408CrossRefGoogle Scholar
  82. 82.
    Guillamón E, Rodríguez J, Burbano C, Muzquiz M, Pedrosa MM, Cabanillas B, Crespo JF, Sancho AI, Mills EN, Cuadrado C (2010) Characterization of lupin major allergens (Lupinus albus L.). Mol Nutr Food Res 54:1668–1676CrossRefGoogle Scholar
  83. 83.
    Guillamón E, Burbano C, Cuadrado C, Muzquiz M, Pedrosa MM, Sánchez M, Cabanillas B, Crespo JF, Rodriguez J, Haddad J, Allaf K (2008) Effect of an instantaneous controlled presssure drop on in vitro allergenicity to lupins (Lupinus albus var Multolupa). Int Arch Allergy Immunol 145:9–14CrossRefGoogle Scholar
  84. 84.
    Sanchez-Monge R, Lopez-Torrejon G, Pascual CY, Varela J, Martin-Esteban M, Salcedo G (2004) Vicilin and convicilin are potential major allergens from pea. Clin Exp Allergy 34:1747–1753CrossRefGoogle Scholar
  85. 85.
    Wensing M, Knulst AC, Piersma S, O’kane F, Knol EF, Koppelman SJ (2003) Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). J Allergy Clin Immunol 111:420–424CrossRefGoogle Scholar
  86. 86.
    Malley A, Baecher L, Mackler B, Perlman F (1975) Isolation of allergens from the green pea. J Allergy Clin Immunol 56:282–290CrossRefGoogle Scholar
  87. 87.
    Ogawa T, Bando N, Tsuji H, Okajima H, Nishikawa K, Sasaoka K (1991) Investigation of the IgE-binding proteins in soybeans by immunoblotting with the sera of the soybean-sensitive patients with atopic dermatitis. J Nutr Sci Vitaminol 37:555–565CrossRefGoogle Scholar
  88. 88.
    Wilson S, Blaschek K, de Mejia E (2005) Allergenic proteins in soybean: processing and reduction of P34 allergenicity. Nutr Rev 63:47–58Google Scholar
  89. 89.
    Awazuhara H, Kawai H, Maruchi N (1997) Major allergens in soybean and clinical significance of IgG4 antibodies investigated by IgE- and IgG4-immunoblotting with sera from soybean-sensitive patients. Clin Exp Allergy 27:325–332CrossRefGoogle Scholar
  90. 90.
    Shibasaki M, Suzuki S, Tajima S, Nemoto H, Kuruome T (1980) Allergenicity of major component proteins of soybean. Int Arch Allergy Appl Immunol 61:441–448CrossRefGoogle Scholar
  91. 91.
    Lakemond CM, de Jongh HH, Hessing M, Gruppen H, Voragen AG (2000) Heat denaturation of soy glycinin: influence of pH and ionic strength on molecular structure. J Agric Food Chem 48:1991–1995CrossRefGoogle Scholar
  92. 92.
    Codina R, Oehling AG Jr, Lockey RF (1998) Neoallergens in heated soybean hull. Int Arch Allergy Immunol 117:120–125CrossRefGoogle Scholar
  93. 93.
    Asero R, Mistrello G, Roncarolo D, Amato S, van Ree R (2001) String bean-induced anaphylaxis. Allergy 56:259–260CrossRefGoogle Scholar
  94. 94.
    Daroca P, Crespo JF, Reano M, James JM, Lopez-Rubio A, Rodriguez J (2000) Asthma and rhinitis induced by exposure to raw green beans and chards. Ann Allergy Asthma Immunol 85:215–218CrossRefGoogle Scholar
  95. 95.
    Pastorello EA, Pravettoni V, Farioli L, Primavesi L, Scibilia J, Piantanida M, Mascheri A, Conti A (2010) Green bean (Phaseolus vulgaris): A new source of IgE- binding lipid transfer protein. J Agric Food Chem 58:4513–4516Google Scholar
  96. 96.
    Pahud JJ, Schwarz K (1984) Research and development of infant formulae with reduced allergenic properties. Ann Allergy 53:609–614Google Scholar
  97. 97.
    Chung SY, Maleki SJ, Champagne ET (2004) Allergenic properties of roasted peanut allergens may be reduced by peroxidase. J Agric Food Chem 52:4541–4545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alok Kumar Verma
    • 1
  • Sandeep Kumar
    • 1
  • Mukul Das
    • 1
  • Premendra D. Dwivedi
    • 1
  1. 1.Food, Drug and Chemical Toxicology GroupCSIR- Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations