Plant Foods for Human Nutrition

, Volume 67, Issue 4, pp 442–449

Antioxidant Capacity and Antimutagenic Activity of Anthocyanin and Carotenoid Extracts from Nixtamalized Pigmented Creole Maize Races (Zea mays L.)

  • Sandra Mendoza-Díaz
  • Ma. del Carmen Ortiz-Valerio
  • Eduardo Castaño-Tostado
  • Juan de Dios Figueroa-Cárdenas
  • Rosalía Reynoso-Camacho
  • Minerva Ramos-Gómez
  • Rocio Campos-Vega
  • Guadalupe Loarca-Piña
Original Paper

Abstract

Nixtamalization process is the first step to obtain maize based products, like tortillas; however, in both the traditional and commercial processes, white grain is generally preferred. Creole maize races, mainly pigmented varieties, have increasingly attention since these are rich in anthocyanins and carotenoids. The aim of this investigation was to evaluate the antioxidant and antimutagenic activity of rich anthocyanins and carotenoids extracts from creole maize races before (grain) and after (masa and tortilla) the nixtamalization process. Most anthocyanins and carotenoids were lost during nixtamalization. Before nixtamalization, blue and red genotypes contained either higher antioxidant capacity and anthocyanin contents (963 ± 10.0 and 212.36 ± 0.36 mg of cyanidin-3-glucoside eq/100 g, respectively) than the white and yellow genotypes. However, the highest carotenoid levels were displayed by red grains (1.01 ± 0.07 to 1.14 ± 0.08 μg of β-carotene eq/g extract). Anthocyanins losses were observed when the blue grains were processed into masa (83 %) and tortillas (64 %). Anthocyanins content correlated with antiradical activity (r = 0.57) and with 2-aminoanthracene -induced mutagenicity inhibition on TA98 and TA100 (r = −0.62 and r = −0.44, respectively). For white grains, nixtamalization also reduced carotenoids (53 to 56 %), but not antioxidant activity and 2-Aa-induced mutagenicity. Throughout the nixtamalization process steps, all the extracts showed antimutagenic activity against 2-aminoanthracene—induced mutagenicity (23 to 90 %), displaying higher potential to inhibit base changes mutations than frameshift mutations in the genome of the tasted microorganism (TA100 and TA98, respectively). The results suggest that even though there were pigment losses, creole maize pigments show antioxidant and antimutagenic activities after nixtamalization process.

Keywords

Pigmented creole maize races Nixtamalization Anthocyanins Carotenoids Antioxidant activity Antimutagenic activity 

Abbreviations

2-Aa

2-aminoanthracene

AA

Antioxidant activity

AFB1

Aflatoxin B1

ANOVA

One way variance analysis

ARA

Antiradical activity

ARE

Anthocyanins rich extract

BaP

Benzo[a]pyrene

BHT

Butylated hydroxytoluene

CP

Cyclophosphamide

CRE

Carotenoids rich extract

DPPH

2 2-diphenyl-1-picrylhydrazyl

HPLC

High-performance liquid chromatography

IQ

2-amino-3-methylimidazo[4,5-f]quinoline

SEM

Mean standard error

Trp-P-1

3-amino-1 4-dimethyl-5h-pyrido [4, 3-b] indole

References

  1. 1.
    Martínez F, Martínez H, Sanmartín E, Sánchez F, Chang Y, Barrera D, Ríos E (2001) Effect of the components of maize on the quality of masa and tortillas during the traditional nixtamalization process. J Sci Food Agric 81:1455–1462CrossRefGoogle Scholar
  2. 2.
    Vázquez-Carrillo G, García-Lara S, Salinas-Moreno Y, Bergvinson DJ, Palacios-Rojas N (2011) Grain and tortilla quality in landraces and improved maize grown in the highlands of Mexico. Plant Foods Hum Nutr 66(2):203–238CrossRefGoogle Scholar
  3. 3.
    De la Parra C, Serna-Saldivar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183CrossRefGoogle Scholar
  4. 4.
    Zilić S, Serpen A, Akıllıoğlu G, Gökmen V, Vančetović J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 60(5):1224–1231CrossRefGoogle Scholar
  5. 5.
    Ramos-Escudero F, María Muñoz A, Alvarado-Ortíz C, Alvarado A, Yáñez AA (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15(2):206–215CrossRefGoogle Scholar
  6. 6.
    He F, Liang N, Mu L, Pan Q-H, Wang J, Reeves MJ, Duan C-Q (2012) Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 17:1571–1601CrossRefGoogle Scholar
  7. 7.
    Brouillard R (1982) Chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as Food Colors. Academic, New York, pp 1–38Google Scholar
  8. 8.
    Fossen T, Cabrita L, Andersen OM (1998) Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem 63(4):435–440CrossRefGoogle Scholar
  9. 9.
    Terao J, Minami Y, Bando N (2011) Singlet molecular oxygen-quenching activity of carotenoids: Relevance to protection of the skin from photoaging. J Clin Biochem Nutr 48(1):57–62CrossRefGoogle Scholar
  10. 10.
    Lozano-Alejo N, Vázquez-Carrillo G, Pixley K, Palacios-Rojas N (2007) Physical properties and carotenoid content of maize kernels and its nixtamalized snacks. Innov Food Sci Emerg Technol 8(3):385–389CrossRefGoogle Scholar
  11. 11.
    Serna-Saldívar SO, Gómez MH, Rooney LW (1990) Technology, chemistry and nutritional value of alkaline-cooked corn products. In: Pomeranz Y (ed) Advances in Cereal Science and Technology, vol X. American Association of Cereal Chemists, St Paul, MN, pp 243–307Google Scholar
  12. 12.
    Salinas-Moreno Y, Martínez-Bustos F, Soto-Hernández M, Ortega-Paczka R, Arellano-Vázquez JL (2003) Efecto de la nixtamalización sobre las antocianinas del grano de maíces pigmentados. Agrociencia 37:617–628, ISSN 1405–3195Google Scholar
  13. 13.
    Abdel-Aal ESM, Hucl PA (1999) Rapid method for quantifying anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76(3):350–354CrossRefGoogle Scholar
  14. 14.
    AOAC (1996) Official Methods of Analysis of the Association of Official Analytical Chemistry. Method 970.64. Carotenes and xanthophylls in dried plant materials and mixed feeds. Chap. 45, pp 5Google Scholar
  15. 15.
    Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604CrossRefGoogle Scholar
  16. 16.
    Kado NY, Guirguis GN, Flessel CP, Chan RC, Chang KI, Wesolowski JJ (1986) Mutagenicity of fine (less than 2.5 microns) airborne particles: Diurnal variation in community air determined by Salmonella micro-preincubation (microsuspension) procedure. Environ Mutagen 8(1):53–66CrossRefGoogle Scholar
  17. 17.
    Kado NY, Langley D, Eisenstadt E (1983) A simple modification of the Salmonella liquid-incubation assay. Increased sensitivity for detecting mutagens in human urine. Mutat Res 121(1):25–32CrossRefGoogle Scholar
  18. 18.
    Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364CrossRefGoogle Scholar
  19. 19.
    Lopez-Martinez LX, Parkin KL, Garcia HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66(1):41–47CrossRefGoogle Scholar
  20. 20.
    Aguayo-Rojas J, Mora-Rochín S, Cuevas-Rodríguez EO, Serna-Saldívar SO, Gutierrez-Uribe JA, Reyes-Moreno C, Milán-Carrillo J (2012) Phytochemicals and antioxidant capacity of tortillas obtained after lime-cooking extrusion process of whole pigmented mexican maize. Plant Foods Hum Nutr 67(2):178–185CrossRefGoogle Scholar
  21. 21.
    Velazco-Martinez M, Angulo O, Vazquez-Courtier DL, Arroyo-Lara A, Monroy-Rivera JA (1997) Effect of dried solid of nejayote on broiler growth. Metabol Nutr 76:1531–1534, ISSN: 1525–3171Google Scholar
  22. 22.
    Gliszczyńska-Swigło A, Ciska E, Pawlak-Lemańska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam 11:1088–1098CrossRefGoogle Scholar
  23. 23.
    Pedreschi R, Cisneros-Zevallos L (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J Agric Food Chem 4:4557–4567CrossRefGoogle Scholar
  24. 24.
    El-Ghorab A, El-Massry KF, Shibamoto T (2007) Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silo (Zea mays L.). J Agric Food Chem 55:9124–9127CrossRefGoogle Scholar
  25. 25.
    Serpen A, Goekmen V, Pellegrini N, Fogliano V (2008) Direct measurement of the total antioxidant capacity of cereal products. J Cereal Sci 48(3):816–820CrossRefGoogle Scholar
  26. 26.
    Gokmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci Technol 20(6–7):278–288CrossRefGoogle Scholar
  27. 27.
    Burgos-Hernández A, López-García R, Njapau H, Park DL (2001) Partial chemical/structural elucidation of anti-mutagenic compounds from corn. Toxicology 166:161–170CrossRefGoogle Scholar
  28. 28.
    Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Sci Technol 42(6):1187–1192, ISSN: 0023–6438Google Scholar
  29. 29.
    Aparicio-Fernández X, Manzo-Bonilla L, Loarca-Piña GF (2005) Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans Phaseolus vulgaris against aflatoxin B1. J Food Sci 70(1):S73–S78CrossRefGoogle Scholar
  30. 30.
    Rauscher R, Edenharder R, Platt KL (1998) In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutat Res-Gen Tox En 413(2):129–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sandra Mendoza-Díaz
    • 1
  • Ma. del Carmen Ortiz-Valerio
    • 1
  • Eduardo Castaño-Tostado
    • 1
  • Juan de Dios Figueroa-Cárdenas
    • 2
  • Rosalía Reynoso-Camacho
    • 1
  • Minerva Ramos-Gómez
    • 1
  • Rocio Campos-Vega
    • 1
  • Guadalupe Loarca-Piña
    • 1
  1. 1.Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Facultad de QuímicaUniversidad Autónoma de Querétaro, Centro UniversitarioSantiago de QuerétaroMéxico
  2. 2.Centro de Investigación y de Estudios Avanzados del IPN, Unidad QuerétaroSantiago de QuerétaroMéxico

Personalised recommendations