Plant Foods for Human Nutrition

, Volume 67, Issue 4, pp 450–456 | Cite as

High Antioxidant Activity Mixture of Extruded Whole Quality Protein Maize and Common Bean Flours for Production of a Nutraceutical Beverage Elaborated with a Traditional Mexican Formulation

  • Cuauhtémoc Reyes-Moreno
  • Oscar D. Argüelles-López
  • Jesús J. Rochín-Medina
  • Jorge Milán-Carrillo
  • Javier Rivera-López
  • Angel Valdez-Ortiz
  • José A. López-Valenzuela
  • Roberto Gutiérrez-Dorado
Original Paper


The objective of this study was to determine the best combination of extrusion process variables for the production of whole quality protein maize (EQPMF) and common bean (ECBF) flours to prepare a high antioxidant activity mixture (EQPMF + ECBF) suitable to produce a nutraceutical beverage with high acceptability elaborated with a traditional Mexican formulation. Processing conditions were obtained from a factorial combination of barrel temperature (BT = 120–170 °C) and screw speed (SS = 120–200 rpm). Response surface methodology was applied to obtain maximum values for antioxidant activity (A ox A) of the flour mixture (EQPMF + ECBF) and acceptability (A) of the nutraceutical beverage. The best combinations of extrusion process variables for EQPMF and ECBF to prepare an optimized mixture (60%EQPMF + 40%ECBF) were BT = 98 °C/SS = 218 rpm and BT = 105 °C/SS = 83 rpm, respectively. The optimized mixture had A ox A = 14,320 μmol Trolox equivalent (TE)/100 g sample dry weight (dw) and a calculated protein efficiency ratio (C-PER) of 2.17. A 200 ml portion of a beverage prepared with 25 g of the optimized flour mixture had A ox A = 3,222 μmol TE, and A = 89 (level of satisfaction “I like it extremely”). This nutraceutical beverage could be used as an alternative to beverages with low nutritional/nutraceutical value, such as those prepared with water, simple sugars, artificial flavoring and colorants, which are widely offered in the market.


Antioxidant activity Extrusion Quality protein maize Common bean Cereal/legume mixture Nutraceutical beverage 



This research was supported by Fondo Mixto CONACyT-Gobierno del Estado de Sinaloa (2008), CECyT-Sinaloa (2009), Programa de Fomento y Apoyo a Proyectos de Investigación (PROFAPI), Universidad Autónoma de Sinaloa (2009–2010) and Fundación Produce Sinaloa, A.C. (2010–2011).

Supplementary material

11130_2012_324_MOESM1_ESM.pdf (106 kb)
ESM 1 (PDF 105 kb)


  1. 1.
    Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219CrossRefGoogle Scholar
  2. 2.
    USDA (2010) Antioxidants and Health. ACES publications, pp 4Google Scholar
  3. 3.
    FAOSTAT (2011) Statistical database; Online reference DesktopDefault.aspx?PageID = 567#ancor. Accessed October 28, 2011
  4. 4.
    Gutiérrez-Dorado R, Ayala-Rodríguez AE, Milán-Carrillo J et al (2008) Technological and nutritional properties of flours and tortillas from nixtamalized and extruded quality protein maize (Zea mays L). Cereal Chem 85:808–816CrossRefGoogle Scholar
  5. 5.
    Lopez-Martínez LX, Oliart-Ros RM, Valerio-Alfaro G et al (2009) Antioxidant activity, phenolic compounds and anthocyanins content of 18 strains of Mexican maize. LWT Food Sci Technol 42:1187–1192CrossRefGoogle Scholar
  6. 6.
    Mora-Rochín S, Gutiérrez-Uribe JA, Serna-Saldívar SO et al (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:502–508CrossRefGoogle Scholar
  7. 7.
    Anselmi C, Centini M, Granata P et al (2004) Antioxidant activity of ferulic acid alkyl esters in a heterophasic system. J Agric Food Chem 52:6425–6432CrossRefGoogle Scholar
  8. 8.
    Aparicio-Fernández X, García-Gasca T, Yousef GG et al (2006) Chemopreventive activity of polyphenolics from black jamada bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J Agric Food Chem 54:2116–21229Google Scholar
  9. 9.
    Bazzano L, He J, Ogden LG et al (2001) Legume consumption and risk of coronary heart disease in US men and women. Arch Intern Med 161:2573–2578CrossRefGoogle Scholar
  10. 10.
    Grajales-García EM, Osorio-Díaz P et al (2012) Chemical composition, starch digestibility and antioxidant capacity of tortilla made with a blend of quality protein maize and black bean. Int J Mol Sci 13:286–301CrossRefGoogle Scholar
  11. 11.
    Paredes-López O, Guevara-Lara F, Bello-Pérez LA (2006) Los Alimentos Mágicos de las Culturas Indígenas Mesoamericanas. Fondo de Cultura Económica. ISBN 968-16-7567-3 México, DF pp 32–34, 81–88Google Scholar
  12. 12.
    Cuevas-Martínez D, Moreno-Ramos C, Martínez-Manrique E et al (2010) Evaluación nutricional y textural de tortillas de maíz-frijol blanco nixtamalizadas. Interciencia 35:828–832Google Scholar
  13. 13.
    Milán-Carrillo J, Alarcón-Valdez C, Gutiérrez-Dorado R et al (2007) Nutritional properties of quality protein maize and chickpea extruded based weaning food. Plant Foods Hum Nutr 62:31–37CrossRefGoogle Scholar
  14. 14.
    Vasanthan T, Yeung J, Hoover R (2001) Dextrinization of starch in barley flours with thermostable alpha-amylase by extrusion cooking. Starch-Stärke 53:616–622CrossRefGoogle Scholar
  15. 15.
    Bazúa CD, Guerra R, Sterner H (1979) Extruded corn flour as an alternative to lime treated corn flour for tortilla preparation. J Food Sci 44:940–941CrossRefGoogle Scholar
  16. 16.
    Serna-Saldívar SO, Canett R, Vargas J et al (1988) Effect of soybean and sesame addition on the nutritional value of maize and decorticated sorghum tortillas produced by extrusion cooking. Cereal Chem 65:44–48Google Scholar
  17. 17.
    Milán-Carrillo J, Reyes-Moreno C, Camacho-Hernández IL, Rouzaud-Sandez O (2002) Optimization of extrusion process to transform hardened chickpeas (Cicer arietinum L) into a useful product. J Sci Food Agric 82:1718–1728Google Scholar
  18. 18.
    Heckman MA, Sherry K, González de Mejía E (2010) Energy drinks: An assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the United States. Compr Rev Food Sci F 9:303–307CrossRefGoogle Scholar
  19. 19.
    AOAC (1999) Official Methods of Analysis, 16th edn. Association of Official Analytical Chemists, Washington, DCGoogle Scholar
  20. 20.
    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014CrossRefGoogle Scholar
  21. 21.
    Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187CrossRefGoogle Scholar
  22. 22.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol 299:152–178CrossRefGoogle Scholar
  23. 23.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4926CrossRefGoogle Scholar
  24. 24.
    Lopez-Cervantes J, Sanchez-Machado DI, Rosas-Rodriguez JA (2006) Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatograph. J Chromatogr 1105:106–110CrossRefGoogle Scholar
  25. 25.
    Hsu HW, Vavak DI, Saterlee ID, Miller GA (1977) A multienzyme technique for estimating protein digestibility. J Food Sci 42:1269–1273CrossRefGoogle Scholar
  26. 26.
    FAO/WHO/UNU Expert Consultation (1985) Energy and protein requirements. WHO Tech Rep Ser No 724. Word Health Organization: GenevaGoogle Scholar
  27. 27.
    Satterlee LD, Kendrick JG, Marshall HF et al (1982) In vitro assay for predicting protein efficiency ratio as measured by rat bioassay: Collaborative study. J Assoc Off Anal Chem 65:798–809Google Scholar
  28. 28.
    Cardello AV, Schutz HG (2004) Research note numerical scale-point locations for constructing the LAM (labeled affective magnitude) scale. J Sens Stud 19:341–346CrossRefGoogle Scholar
  29. 29.
    Khuri AA, Cornell JA (1987) Response surfaces: Designs and analyses. Marcel Dekker Inc, New York, NY, USA, pp 1–17:254Google Scholar
  30. 30.
    De la Vara SR, Domínguez DJ (2002) Métodos de superficie de respuesta; un estudio comparativo. Revista de Matemáticas: Teoría y Aplicaciones 1(9):47–65Google Scholar
  31. 31.
    Özer EA, Herken EN, Güzel S, Ainsworth P, İbanoğlu S (2006) Effect of extrusion process on the antioxidant activity and total phenolics in a nutritious snack food. Int J Food Sci Tech 41:289–293CrossRefGoogle Scholar
  32. 32.
    Delgado-Licon E, Martínez-Ayala AL, Rocha-Guzmán NE et al (2009) Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. Int J Food Sci Nutr 60:522–532CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Cuauhtémoc Reyes-Moreno
    • 1
    • 2
    • 3
  • Oscar D. Argüelles-López
    • 1
  • Jesús J. Rochín-Medina
    • 1
    • 2
    • 3
  • Jorge Milán-Carrillo
    • 1
    • 2
    • 3
  • Javier Rivera-López
    • 3
    • 4
  • Angel Valdez-Ortiz
    • 1
    • 2
    • 3
  • José A. López-Valenzuela
    • 1
    • 2
    • 3
  • Roberto Gutiérrez-Dorado
    • 1
    • 2
    • 3
    • 5
  1. 1.Facultad de Ciencias Químico Biológicas (FCQB)Universidad Autónoma de Sinaloa (UAS), Ciudad UniversitariaCuliacánMéxico
  2. 2.Maestría en Ciencia y Tecnología de AlimentosFCQB-UAS, Ciudad UniversitariaCuliacánMéxico
  3. 3.Programa Regional del Noroeste para el Doctorado en BiotecnologíaFCQB-UAS, Ciudad UniversitariaCuliacánMéxico
  4. 4.Instituto Tecnológico de los MochisLos MochisMéxico
  5. 5.Facultad de Ciencias Químico BiológicasUniversidad Autónoma de SinaloaCuliacánMéxico

Personalised recommendations