Advertisement

Plant Foods for Human Nutrition

, Volume 67, Issue 3, pp 242–246 | Cite as

Phenolic Constituents of the Chilean Herbal Tea Fabiana imbricata R. et P.

  • Cristina Quispe
  • Ezequiel Viveros-Valdez
  • Guillermo Schmeda-HirschmannEmail author
Original Paper

Abstract

“Pichi” or “pichi romero” (Fabiana imbricata R. et. P., Solanaceae) is a Chilean plant used as a tea in the Andean regions of Chile and Argentina. A very simple and direct method was developed for the qualitative analysis of polyphenols in the tea by high-performance liquid chromatography (HPLC) with diode array detection and electrospray ionization tandem mass spectrometry. The phenolic constituents identified in the teas were chlorogenic acid (3-O-caffeoylquinic acid), p-hydroxyacetophenone, scopoletin and quercetin derivatives. The glycosides were mainly glucosides from p-hydroxyacetophenone and scopoletin while di- and tri-glycosides from quercetin were the main flavonoids. The content of the main phenolic compounds in the teas (g/100 g lyophilized infusion) was 0.8–1.9 % for scopoletin, 0.4–6.2 % for p-hydroxyacetophenone and 2.1–4.3 % for rutin, respectively. The health-promoting properties reported for this herbal tea can be associated with the presence of several phenolics with known antioxidant, diuretic and antiinflammatory activity.

Keywords

Chilean herbal tea Fabiana imbricata HPLC-DAD-MS Chlorogenic acid Quercetin derivatives 

Abbreviations

HPLC-DAD

High-performance liquid chromatography with diode array detection

HPLC-MS

High-performance liquid chromatography mass spectrometry

HPLC-DAD-ESI-MS

High-performance liquid chromatography with diode array detection electrospray ionization mass spectrometry

CID

Collision induced dissociation

LC/MS

Liquid chromatography – mass spectrometry

Notes

Acknowledgments

Financial support by Programa de Investigación en Productos Bioactivos, Universidad de Talca is kindly acknowledged. Cristina Quispe and Ezequiel Viveros Valdez thank the PBCT Program, PSD-50 for a postdoctoral grant.

References

  1. 1.
    Reto M, Figueira ME, Filipe HM, Almeida CM (2007) Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods Hum Nutr 62:139–144CrossRefGoogle Scholar
  2. 2.
    Dong JZ, Lu DY, Wang Y (2009) Analysis of flavonoids from leaves of cultivated Lycium barbarum L. Plant Foods Hum Nutr 64:199–204CrossRefGoogle Scholar
  3. 3.
    Gursoy N, Tepe B (2009) Determination of the antimicrobial and antioxidative properties and total phenolics of two “endemic” Lamiaceae species from Turkey: Ballota rotundifolia L. and Teucrium chamaedrys C. Koch. Plant Foods Hum Nutr 64:135–140CrossRefGoogle Scholar
  4. 4.
    López V, Jäger AK, Akerreta S, Cavero RY, Calvo MI (2010) Antioxidant activity and phenylpropanoids of Phlomis lychnitis L.: A traditional herbal tea. Plant Foods Hum Nutr 65:179–185CrossRefGoogle Scholar
  5. 5.
    Mösbach EW von (1992) Botanica Indigena de Chile. In: Aldunate C, Villagrán C (eds). Museo Chileno de Arte Precolombino, Fundación Andes and Editorial Andrés Bello, Santiago de ChileGoogle Scholar
  6. 6.
    Brown GD (1994) The sesquiterpenes of Fabiana imbricata. Phytochemistry 35:425–433CrossRefGoogle Scholar
  7. 7.
    Schmeda-Hirschmann G, Papastergiou F (1994) Sesquiterpenes from Fabiana imbricata. Phytochemistry 36:1439–1442CrossRefGoogle Scholar
  8. 8.
    Razmilic I, Schmeda-Hirschmann G, Dutra-Behrens M, Reyes S, Lopez I, Theoduloz C (1994) Rutin and scopoletin content and micropropagation of Fabiana imbricata. Planta Med 60:140–142CrossRefGoogle Scholar
  9. 9.
    Richtmeyer NK (1970) The isolation of D-manno-heptulose, perseitol, D-glycero-D-manno-octulose, and other compounds from pichi tops (Fabiana imbricata Ruiz & Pav.). Carbohydr Res 12:233–239CrossRefGoogle Scholar
  10. 10.
    Lima B, Tapia A, Luna L, Fabani MP, Schmeda-Hirschmann G, Podio NS, Wunderlin DA, Feresin GE (2009) Main flavonoids, DPPH activity and metal content allow determining the geographical origin of propolis from the province of San Juan (Argentina). J Agric Food Chem 57:2691–2698CrossRefGoogle Scholar
  11. 11.
    Allwood JW, Goodacre R (2010) An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47CrossRefGoogle Scholar
  12. 12.
    Simirgiotis MJ, Schmeda-Hirschmann G (2010) Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionization tandem mass spectrometry (HPLC-MSn). J Chromatogr A 1217:443–449CrossRefGoogle Scholar
  13. 13.
    Simirgiotis MJ, Schmeda-Hirschmann G (2010) Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-electrospray tandem mass spectrometry and free radical quenching techniques. J Food Compos Anal 23:545–553CrossRefGoogle Scholar
  14. 14.
    Simirgiotis MJ, Caligari PDS, Schmeda-Hirschmann G (2009) Phenolic compounds from fruits of the Chilean mountain papaya Vasconcellea pubescens (A. DC) identified by liquid chromatography-UV detection–mass spectrometry. Food Chem 115:775–784CrossRefGoogle Scholar
  15. 15.
    Schmeda-Hirschmann G, Jordan M, Gerth A, Wilken D, Hormazabal E, Tapia AA (2004) Secondary metabolite content in Fabiana imbricata plants and in vitro cultures. Z Naturforsch 59C:48–54Google Scholar
  16. 16.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956CrossRefGoogle Scholar
  17. 17.
    Kang SY, Sung SH, Park JH, Kim YC (1998) Hepatoprotective activity of scopoletin, a constituent of Solanum lyratum. Arch Pharm Res 21:718–722CrossRefGoogle Scholar
  18. 18.
    Kang TH, Pae HO, Jeong SJ, Yoo JC, Choi BM, Jun CD, Chung HT, Miyamoto T, Higuchi R, Kim YC (1999) Scopoletin: An inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Med 65:400–403CrossRefGoogle Scholar
  19. 19.
    Yun JW (2010) Possible anti-obesity therapeutics from nature—A review. Phytochemistry 71:1625–1641CrossRefGoogle Scholar
  20. 20.
    Dictionary of natural products on DVD, Version 20:2 (2011) CRC Press, Taylor & Francis.Google Scholar
  21. 21.
    Knapp JE, Farnsworth NR, Theiner M, Schiff PL (1972) Anthraquinones and other constituyents of Fabiana imbricata. Phytochemistry 11:3091–3092CrossRefGoogle Scholar
  22. 22.
    Aoshima H, Hirata S, Ayabe S (2007) Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem 103(2):617–622CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Cristina Quispe
    • 1
  • Ezequiel Viveros-Valdez
    • 1
    • 2
  • Guillermo Schmeda-Hirschmann
    • 1
    Email author
  1. 1.Instituto de Química de Recursos Naturales, Laboratorio de Química de Productos NaturalesUniversidad de TalcaTalcaChile
  2. 2.Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations