Plant Foods for Human Nutrition

, Volume 67, Issue 3, pp 262–270 | Cite as

Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil

  • Carlos M. Donado-Pestana
  • Jocelem Mastrodi SalgadoEmail author
  • Alessandro de Oliveira Rios
  • Priscila Robertina dos Santos
  • André Jablonski
Original Paper


Intervention strategies regarding the biofortification of orange-fleshed sweet potato, which is a rich source of carotenoids for combating vitamin A deficiency, are being developed in Brazil. This study was conducted to evaluate the concentrations of individual carotenoids, total phenolic compounds and antioxidant capacity in the roots of four biofortified sweet potato cultivars that were raw or processed by four common heat treatments. HPLC, Folin-Ciocalteu, DPPH and ABTS assays were used. All cultivars showed high levels of carotenoids in raw roots, predominantly all-trans-β-carotene (79.1–128.5 mg.100 g−1 DW), suggesting a high estimated vitamin A activity. The CNPH 1194 cultivar reported carotenoids values highest than those of other cultivars (p < 0.05). The total phenolic compounds varied among cultivars and heat treatments (0.96–2.05 mg.g−1 DW). In most cases, the heat treatments resulted in a significant decrease in the carotenoids and phenolic compounds contents as well as antioxidant capacity. Processing of flour presented the greatest losses of major carotenoids and phenolics. The phenolic compounds showed more stability than carotenoids after processing. There were significant correlations between the carotenoids and phenolic compounds and the antioxidant capacity.


Bioactivity Biofortification Functional food Heat treatment Sweet potato 



2,2′-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid)




Brazilian Agricultural Research Corporation


high performance liquid chromatography




orange-fleshed sweet potato



The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Estudos Agrários “Luiz de Queiroz” (FEALQ) for the graduate scholarship for the first author. The authors also thank EMBRAPA, especially Dr. Werito Melo, for donating the sweet potato cultivars used in this study.


  1. 1.
    Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE (2000) Fruits and vegetables intake and risk of cardiovascular disease: The women’s health study. Am J Clin Nutr 72:922–928Google Scholar
  2. 2.
    Nakamura K, Nagata C, Oba S, Takatsuka N, Shimizu H (2008) Fruit and vegetable intake and mortality from cardiovascular disease are inversely associated in Japanese women but not in men. J Nutr 138:1129–1134Google Scholar
  3. 3.
    Dauchet L, Amouyel P, Hercberg S, Dallongeville J (2006) Fruits and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J Nutr 136:2588–2593Google Scholar
  4. 4.
    Arruda SF, Souza EM, Siqueira E (2005) Carotenoids from malanga (Xanthosoma sagittifolium) leaves protect cells against oxidative stress in rats. Int J Vitam Nutr Res 75:161–168CrossRefGoogle Scholar
  5. 5.
    Mujić A, Grdović N, Mujić I, Mihailović M, Živković J, Poznanović G, Vidaković M (2011) Antioxidant effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem 125:841–849CrossRefGoogle Scholar
  6. 6.
    Maiani G, Castón MJP, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:S194–S218CrossRefGoogle Scholar
  7. 7.
    Lee JE, Männistö S, Spiegelman D, Hunter DJ, Bernstein L, van den Brandt PA, Buring JE, Cho E, English DR, Flood A, Freudenheim JL, Giles GG, Giovannucci E, Håkansson N, Horn-Ross PL, Jacobs EJ, Leitzmann MF, Marshall JR, McCullough ML, Miller AB, Rohan TE, Ross JA, Schatzkin A, Schouten LJ, Virtamo J, Wolk A, Zhang SM, Smith-Warner SA (2009) Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: A pooled analysis of 13 prospective studies. Cancer Epidemiol Biomarkers Prev 18:1730–1739CrossRefGoogle Scholar
  8. 8.
    Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306CrossRefGoogle Scholar
  10. 10.
    Teow CC, Truong V, McFeeters RF, Thompson RL, Pecota KV, Yencho GC (2007) Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 103:829–838CrossRefGoogle Scholar
  11. 11.
    Mercadante AZ, Rodriguez-Amaya DB (1998) Effects of ripening, cultivar differences, and processing on the carotenoid composition of mango. J Agric Food Chem 46:128–130CrossRefGoogle Scholar
  12. 12.
    Zanatta CF, Mercadante AZ (2007) Carotenoid composition from the Brazilian tropical fruit camu-camu (Myrciaria dubia). Food Chem 101:1543–1549CrossRefGoogle Scholar
  13. 13.
    Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 38–165Google Scholar
  14. 14.
    Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. OMNI Research/ILSI, Washington, DCGoogle Scholar
  15. 15.
    Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68CrossRefGoogle Scholar
  16. 16.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30Google Scholar
  17. 17.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  18. 18.
    van Jaarsveld PJ, Marais DW, Harmse E, Nestel P, Rodriguez-Amaya DB (2006) Retention of β-carotene in boiled, mashed orange-fleshed sweet potato. J Food Comp Anal 19:321–329CrossRefGoogle Scholar
  19. 19.
    Tumuhinbise GA, Namutebi A, Muyonga JH (2009) Microstructure and in vitro beta carotene bioaccessibility of heat processed orange fleshed sweet potato. Plant Foods Hum Nutr 64:312–318CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Amaya DB (1997) Carotenoids and food preparation: The retention of provitamin A carotenoids in prepared, processed, and stored foods. OMNI Research, Washington, DCGoogle Scholar
  21. 21.
    Wu X, Sun C, Yang L, Zeng G, Liu Z, Li Y (2008) Beta-carotene content in sweet potato varieties from China and the effect of preparation on beta-carotene retention in the Yanshu No. 5. Inn Food Sci Emerg Tech 9:581–586CrossRefGoogle Scholar
  22. 22.
    Almeida LB, Penteado MVC (1988) Carotenoids and pro-vitamin A value of white fleshed Brazilian sweet potatoes (Ipomoea batatas Lam.). J Food Comp Anal 1:341–352CrossRefGoogle Scholar
  23. 23.
    Ameny MA, Wilson PW (1997) Relationship between Hunter color values and β-carotene contents in white-fleshed African sweetpotatoes (Ipomoea batatas Lam.). J Sci Food Agric 73:301–306CrossRefGoogle Scholar
  24. 24.
    Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32–52CrossRefGoogle Scholar
  25. 25.
    Chandrika UG, Basnayake BMLB, Athukorala I, Colombagama PWNM, Goonetilleke A (2010) Carotenoid content and in vitro bioaccessibility of lutein in some leafy vegetables popular in Sri Lanka. J Nutr Sci Vitaminol 56:203–207CrossRefGoogle Scholar
  26. 26.
    Obana A, Hiramitsu T, Gohto Y, Ohira A, Mizuno S, Hirano T, Bernstein PS, Fujii H, Iseki K, Tanito M, Hotta Y (2008) Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population. Ophthalmology 115:147–157CrossRefGoogle Scholar
  27. 27.
    Granado F, Olmedilla B, Blanco I, Rojas-Hidalgo E (1992) Carotenoid composition in raw and cooked Spanish vegetables. J Agric Food Chem 40:2135–2140CrossRefGoogle Scholar
  28. 28.
    Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111CrossRefGoogle Scholar
  29. 29.
    Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50:515–532CrossRefGoogle Scholar
  30. 30.
    Nagao A, Olson JA (1994) Enzymatic formation of 9-cis, 13-cis, and all-trans retinals from isomers of β-caroteno. FASEB J 8:968–973Google Scholar
  31. 31.
    Fonseca EMAV, Chagas CEA, Mazzantini RP, Heidor R, Ong TP, Moreno FS (2005) All-trans and 9-cis retionoic acids, retinol and β-carotene chemopreventive activities during the initial phases of hepatocarcinogenesis involve distinct actions on glutathione S-transferase positive preneoplastic lesions remodeling and DNA damage. Carcinogenesis 26:1940–1946CrossRefGoogle Scholar
  32. 32.
    Ben-Amotz A, Fisher R (1998) Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem 62:515–520CrossRefGoogle Scholar
  33. 33.
    K’Osambo LM, Carey EE, Misra AK, Wilkes J, Hagenimana V (1998) Influence of age, farming site, and boiling on pro-vitamin A content in sweet potato (Ipomoea batatas (L.) Lam.) storage roots. J Food Comp Anal 11:305–321CrossRefGoogle Scholar
  34. 34.
    Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus, Washington, DCGoogle Scholar
  35. 35.
    Duitsman PK, Barua AB, Becker B, Olson JA (1999) Effects of epoxycarotenoids, β-carotene, and retinoic acid on the differentiation and viability of the leukemia cell line NB4 in vitro. Int J Vitam Nutr Res 69:303–308CrossRefGoogle Scholar
  36. 36.
    Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44:37–41CrossRefGoogle Scholar
  37. 37.
    Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302CrossRefGoogle Scholar
  38. 38.
    Padda MS, Picha DH (2008) Quantification of phenolic acids and antioxidant activity in sweetpotato genotypes. Sci Hortic 119:17–20CrossRefGoogle Scholar
  39. 39.
    Rabah IO, Hou DX, Komine S, Fujii M (2004) Potential chemopreventive properties of extract from baked sweet potato (Ipomoea batatas Lam. Cv. Koganesengan). J Agric Food Chem 52:7152–7157CrossRefGoogle Scholar
  40. 40.
    Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:R11–R19CrossRefGoogle Scholar
  41. 41.
    Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N (2008) Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem 56:139–147CrossRefGoogle Scholar
  42. 42.
    Foote CS, Chang YC, Denny RW (1970) Chemistry of singlet oxygen X. Carotenoid quenching parallels biological protection. J Am Chem Soc 92:5216–5218CrossRefGoogle Scholar
  43. 43.
    Rodriguez-Amaya DB (2010) Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids – A review. J Food Comp Anal 23:726–740CrossRefGoogle Scholar
  44. 44.
    Truong VD, Avula RY (2010) Sweet potato purees and dehydrated powders for functional food ingredients. In: Ray RC, Tomlins KI (eds) Sweet potato: Post harvest aspects in food. Nova, New York, pp 117–161Google Scholar
  45. 45.
    Hou WC, Han CH, Chen HJ, Wen CL, Lin YH (2005) Storage proteins of two cultivars of sweet potato (Ipomoea batatas L.) and their protease hydrolysates exhibited antioxidant in vitro. Plant Sci 168:449–456CrossRefGoogle Scholar
  46. 46.
    Dini I, Tenore GC, Dini A (2009) Saponins in Ipomoea batatas tubers: Isolation, characterization, quantification and antioxidant properties. Food Chem 113:411–419CrossRefGoogle Scholar
  47. 47.
    Niwa A, Tajiri T, Higashino H (2011) Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 48:194–202CrossRefGoogle Scholar
  48. 48.
    Hou WC, Han CH, Chen HJ, Wen CL, Lin YH (2005) Storage proteins of two cultivars of sweet potato (Ipomoea batatas L.) and their protease hydrolysates exhibited antioxidant in vitro. Plant Sci 168:449–456CrossRefGoogle Scholar
  49. 49.
    Cambie RC, Ferguson LR (2003) Potential functional foods in the traditional Maori diet. Mutat Res 523–524:109–117Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Carlos M. Donado-Pestana
    • 1
  • Jocelem Mastrodi Salgado
    • 1
    Email author
  • Alessandro de Oliveira Rios
    • 2
  • Priscila Robertina dos Santos
    • 1
  • André Jablonski
    • 3
  1. 1.Departamento de Agroindústria, Alimentos e Nutrição, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  2. 2.Instituto de Ciência e Tecnologia de AlimentosUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de Engenharia de MinasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations