Advertisement

Plant Foods for Human Nutrition

, Volume 67, Issue 2, pp 178–185 | Cite as

Phytochemicals and Antioxidant Capacity of Tortillas Obtained after Lime-Cooking Extrusion Process of Whole Pigmented Mexican Maize

  • Jesús Aguayo-Rojas
  • Saraid Mora-Rochín
  • Edith O. Cuevas-Rodríguez
  • Sergio O. Serna-Saldivar
  • Janet A. Gutierrez-Uribe
  • Cuauhtémoc Reyes-Moreno
  • Jorge Milán-Carrillo
Original Paper

Abstract

The lime-cooking extrusion represents an alternative technology for manufacturing pre-gelatinized flours for tortillas with the advantages of saving energy and generation of null effluents. The phytochemical profiles (total phenolics, anthocyanins) and antioxidant activity of four different types of whole pigmented Mexican maize [white (WM), yellow (YM), red (RM), blue maize (BM)] processed into tortillas were studied. The lime-cooking extrusion process caused a significant decrease (p < 0.05) in total phenolics and antioxidant capacity when compared to raw kernels. Most of the total phenols assayed in raw grains (76.1–84.4 %) were bound. Tortillas from extruded maize flours retained 76.4–87.5 % of total phenolics originally found in raw grains. The BM had the highest anthocyanin content (27.52 mg cyanidin 3-glucoside/100 g DW). The WM, YM, RM and NWM contained 3.3, 3.4, 2.9, and 2.2 %, respectively, of the amount of anthocyanins found in BM. The BM lost 53.5 % of total anthocyanins when processed into extruded tortillas. Approximately 64.7 to 74.5 % of bound phytochemicals from raw kernels were the primary contributors to the ORAC values. Extruded tortillas retained amongst 87.2 to 90.7 % of total hydrophilic antioxidant activity when compared to raw kernels. Compared to the data reported by other authors using the conventional process, the lime-cooking extrusion process allowed the retention of more phenolics and antioxidant compounds in all tortillas.

Keywords

Lime-cooking extrusion Whole pigmented Mexican maize Tortilla Total phenolics Anthocyanins Antioxidant activity 

Notes

Acknowledgements

This research was partially supported by the Universidad Autonoma de Sinaloa (Project PROFAPI-2010), and PROMEP/SEP (Project 2010, Thematic Networks for Cooperation, Food Biotechnology).

References

  1. 1.
    Vielle-Calzada JP, Padilla J (2009) The Mexican landraces: Description classification and diversity. In: Bennetzen JL, Hake SC (eds) Handbook of Maize: Its Biology, 1st edn. New York, New York, pp 453–561Google Scholar
  2. 2.
    Adom KF, Liu RH (2002) Antioxidant activity of grains. J Agr Food Chem 50:6182–6187CrossRefGoogle Scholar
  3. 3.
    López-Martínez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. J Food Sci Tech 42:1187–1192Google Scholar
  4. 4.
    Cuevas Montilla E, Hillebrand S, Antezana A, Winterhalter P (2011) Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J Agric Food Chem dx.doi.org/ 10.1021/jf201061x
  5. 5.
    Okarter N, Liu RH (2010) Health benefits of whole grain phytochemicals. Cri Rev Food Sci Nutr 50:193–208CrossRefGoogle Scholar
  6. 6.
    Pedreschi R, Cisneros LZ (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J Agric Food Chem 54:4557–4567CrossRefGoogle Scholar
  7. 7.
    Hatman LR (2011) State of the Industry. Tortilla’s triple play state. Snack food & whole-sale bakery. http://digital.bnpmedia.com/publication/?i=72295. Accessed 10 June 2011
  8. 8.
    Cortés-Gomez A, Salinas MY, San Martín-Martinez E, Martínez-Bustos F (2006) Stability of anthocyanins of blue maize (Zea mays L.) after nixtamalization of separated pericarp-germ tip cap and endosperm fractions. J Cereal Sci 43:57–62CrossRefGoogle Scholar
  9. 9.
    Eckhoff S, Cuevas-Rodríguez EO, Milán-Carrillo J (2010) Nixtamalization process and products produced therefrom. U.S. patents 7, 740, 895 B2.Google Scholar
  10. 10.
    Milán-Carrillo J, Perales-Sánchez JXK, Cuevas-Rodríguez EO, Ramirez-Wong B, Reyes-Moreno C (2006) The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. Int J Food Sci Tech 41:727–736CrossRefGoogle Scholar
  11. 11.
    Serna-Saldivar SO, Cannet R, Vargas J, Gonzalez M, Bedolla S, Medina C (1988) Effect of soybean and sesame addition on the nutritional value of maize and decorticated sorghum tortillas produced by extrusion cooking. Cereal Chem 65:44–48Google Scholar
  12. 12.
    Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, Thielecke F, Jackson KG, Tuohy KM (2010) Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Br J Nutr 104:1353–1356CrossRefGoogle Scholar
  13. 13.
    Dixit AA, Azar KMJ, Gdner CD, Palaniappan LP (2011) Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease. Nutr Rev 69:479–488CrossRefGoogle Scholar
  14. 14.
    De la Parra C, Serna-Saldivar S, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183CrossRefGoogle Scholar
  15. 15.
    Del Pozo-Insfran D, Brenes CH, Serna-Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39:696–703CrossRefGoogle Scholar
  16. 16.
    Mora-Rochin S, Gutiérrez-Uribe JA, Serna-Saldivar SO, Sánchez-Peña P, Reyes-Moreno C, Milán-Carrillo J (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:502–508CrossRefGoogle Scholar
  17. 17.
    AACC (2000) Official methods of analysis, 9th edn. American Association of Cereal Chemists, St. Paul, MNGoogle Scholar
  18. 18.
    Salinas MY, Martínez BF, Gómez HJ (1992) Comparación de métodos para medir la dureza del maíz (Zea mays L.). Arch Latinoam Nutr 42:59–63Google Scholar
  19. 19.
    Dewanto V, Wu X, Liu RH (2002) Processed sweet corn has higher antioxidant activity. J Agri Food Chem 50:4959–4964CrossRefGoogle Scholar
  20. 20.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–178CrossRefGoogle Scholar
  21. 21.
    Abdel-Aal ESM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354CrossRefGoogle Scholar
  22. 22.
    Cao G, Alessio HM, Culter R (1993) Oxygen-radical absorbance capacity assays for antioxidants. Free Rad Biol Med 1:303–311CrossRefGoogle Scholar
  23. 23.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626CrossRefGoogle Scholar
  24. 24.
    Rooney LW, Suhendro EL (1999) Perspectives on nixtamalization (alkaline cooking) of maize for tortillas and snacks. Cereal Foods World 44:466–470Google Scholar
  25. 25.
    Sahai D, Mua JP, Buendia MO, Rowe M, Jackson DS (2001) Alkaline processing (nixtamalization) of Mexican corn hybrids for tortilla production: significance of corn physicochemical characteristics and process conditions. Cereal Chem 78(2):116–120CrossRefGoogle Scholar
  26. 26.
    Betran J, Bockholt AJ, Rooney LW (2000) Blue corn. In: Hallauer AR (ed) Specialty Corns. CRC Press, Boca Raton, FL, pp 293–301Google Scholar
  27. 27.
    Serna-Saldivar SO, Gomez MH, Almeida-Dominguez HD, Islas-Rubio A, Rooney LW (1993) A method to evaluate the lime cooking properties of corn (Zea mays). Cereal Chem 70:762–764Google Scholar
  28. 28.
    Bockholt AJ, Rooney LW (1987) Searching for kernels of truth. Snack Foods 44:43–48Google Scholar
  29. 29.
    Gaytán-Martínez M, Figueroa-Cárdenas JD, Reyes-Vega ML, Rincón-Sánchez F, Morales-Sánchez E (2006) Microstructure of starch granule related to kernel hardness in corn. Rev Fitotec Mex 29:135–139Google Scholar
  30. 30.
    Martínez-Flores HE, Martínez-Bustos F, Figueroa CJD, González-Hernández J (1998) Tortillas from extruded masa as related to corn genotype and milling process. J Food Sci 63:130–133CrossRefGoogle Scholar
  31. 31.
    Lopez-Martinez LX, Parkin KL, Garcia HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66:41–47CrossRefGoogle Scholar
  32. 32.
    Jing P, Giusti MM (2007) Effects of extraction conditions on improving the field and quality of an anthocyanins-rich purple corn (Zea mays L.) color extract. J Food Sci 72:363C–368CCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Jesús Aguayo-Rojas
    • 1
    • 2
  • Saraid Mora-Rochín
    • 2
  • Edith O. Cuevas-Rodríguez
    • 2
  • Sergio O. Serna-Saldivar
    • 3
  • Janet A. Gutierrez-Uribe
    • 3
  • Cuauhtémoc Reyes-Moreno
    • 1
    • 2
  • Jorge Milán-Carrillo
    • 1
    • 2
    • 4
  1. 1.Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas (FCQB)Universidad Autónoma de Sinaloa (UAS)CuliacánMéxico
  2. 2.Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Química Biológicas (FCQB)Universidad Autónoma de Sinaloa (UAS)CuliacánMéxico
  3. 3.Departamento de Biotecnología e Ingeniería de Alimentos, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus MonterreyMonterreyMéxico
  4. 4.CuliacánMéxico

Personalised recommendations