Skip to main content
Log in

Effects of Different Sources of Fructans on Body Weight, Blood Metabolites and Fecal Bacteria in Normal and Obese non-diabetic and Diabetic Rats

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Fructans contribute significantly to dietary fiber with beneficial effects on gastrointestinal physiology in healthy individuals and offer a promising approach to treating some diseases. Two experiments (Experiment 1 = rats with normal weight; Experiment 2 = obese rats) were developed to compare the effects of three fructan sources (Cichorium intybus L. Asteraceae, Helianthus tuberosus L. Asteraceae and Agave angustifolia ssp. tequilana Haw, Agavaceae) on body weight change, blood metabolites and fecal bacteria in non-diabetic (ND) and diabetic (D) rats. In Experiment 1 total body weight gain and daily feed intake in D and ND rats decreased (P < 0.05) with supplements of fructan. Only in D rats, blood glucose concentrations, fecal Clostrodium spp. counts, and liver steatosis decreased, while blood HDL concentrations and fecal Lactobacillus spp. and Bifidobacterium spp. counts increased due to fructans. In Experiment 2, total body weight gain and feed intake in ND and D rats were also decreased by fructans. In ND rats, fructan decreased blood glucose concentrations. In D rats, fructans from A. angustifolia ssp. tequilana decreased blood cholesterol and LDL and liver steatosis. For both ND and D rats, fecal Lactobacillus spp. and Bifidobacterium spp. counts were higher (P < 0.05) with fructan supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

Diabetic rats

DP:

Degree of polymerization

ND:

Non-diabetic rats

References

  1. Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209

    Article  Google Scholar 

  2. Kotronen A, Yki-Järvinen H, Sevastianova K, Bergholm R, Hakkarainen A, Pietiläinen KH, Juurinen L, Lundbom N, Sørensen TIA (2011) Comparison of the relative contributions of intra-abdominal and liver fat to components of the metabolic syndrome. Obesity 19:23–28

    Article  CAS  Google Scholar 

  3. Laville M, Nazare JA (2009) Diabetes, insulin resistance and sugars. Obes Rev 10(suppl 1):24–33

    Article  CAS  Google Scholar 

  4. Weickert MO, Pfeiffer AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138:439–442

    CAS  Google Scholar 

  5. Brighenti F (2007) Dietary fructans and serum triacylglycerols: A meta-analysis of randomized controlled trials. J Nutr 137:2552S–2556S

    CAS  Google Scholar 

  6. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90:1236–1243

    Article  CAS  Google Scholar 

  7. Alarcon-Aguilar JJ, Fortis-Barrera A, Angeles-Mejia S, Banderas-Dorantes TR, Jasso-Villagomez EI, Almanza-Perez JC, Blancas-Flores G, Zamilpa A, Diaz-Flores M, Roman-Ramos R (2010) Anti-inflammatory and antioxidant effects of a hypoglycemic fructan fraction from Psacalium peltatum (H.B.K.) Cass. in streptozotocin-induced diabetes mice. J Ethnopharmacol 132:400–407

    Article  CAS  Google Scholar 

  8. Choque-Delgado GT, Tamashiro WMSC, Pastore GM (2010) Immunomodulatory effects of fructans. Food Res Int 43:1231–1236

    Article  Google Scholar 

  9. Sarkar S, Pranava M, Marita RA (1996) Demostration of the hyperglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol Res 33:1–4

    Article  CAS  Google Scholar 

  10. Yang D, Chang YY, Hsu CL, Liu CW, Lin YL, Lin YH, Liu KC, Chen YC (2010) Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J Agric Food Chem 10:2020–2027

    Article  Google Scholar 

  11. Su P, Henriksson A, Mitchell H (2007) Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J Appl Microbiol 103:2392–2400

    Article  CAS  Google Scholar 

  12. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  Google Scholar 

  13. SAS (1999) User´s Guide: Statistics [CD-ROM Computer file]. Version 8. SAS Inst. Inc. Cary, NC USA

  14. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. J Clin Nutr 89:1751–1759

    Article  CAS  Google Scholar 

  15. Sánchez D, Moulay L, Muguerza B, Quiñones M, Miguel M, Aleixandre A (2010) Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats. J Med Food 13:621–628

    Article  Google Scholar 

  16. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide-1 receptor. Diabetes 55:1484–1490

    Article  CAS  Google Scholar 

  17. Van Loo J (2004) The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr Res Rev 17:89–98

    Article  Google Scholar 

  18. Biedrzycka E, Bielecka M (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci Technol 15:170–175

    Article  CAS  Google Scholar 

  19. Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, Rossi M (2008) In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14:280–286

    Article  Google Scholar 

  20. Alexiou H, Franck A (2008) Prebiotic inulin-type fructans: Nutritional benefits beyond dietary fibre source. Nutr Bull 33:227–233

    Article  Google Scholar 

  21. Reimer RA, McBurney MI (1996) Dietary fiber modulates intestinal proglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology 137:3948–3956

    Article  CAS  Google Scholar 

  22. Tappenden KA, Thomson AB, Wild GE, McBurney MI (1996) Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. J Parenter Enteral Nutr 20:357–362

    Article  CAS  Google Scholar 

  23. Massimino SP, McBurney MI, Field CJ, Thomson ABR, Keelan M, Hayek MG, Sunvold GD (1998) Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite intestinal glucose transport capacity in healthy dogs. J Nutr 128:1786–1793

    CAS  Google Scholar 

  24. Dumoulin V, Moro F, Barcelo A, Dakka T, Cuber JC (1998) Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused frat ileum. Endocrinology 139:3780–3786

    Article  CAS  Google Scholar 

  25. Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92:521–526

    Article  CAS  Google Scholar 

  26. Urías-Silvas JE, Cani PD, Delmée E, Neyrinck A, López MG, Delzenne NM (2008) Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr 99:254–261

    Article  Google Scholar 

  27. Hashimoto N, Noda T, Kim S, Sarker MZ, Yamauchi H, Takigawa S, Matsuura-Endo C, Susuki T, Han K, Fukushima M (2009) Yam contributes to improvement of glucose metabolism in rats. Plant Foods for Hum Nutr 64:193–198

    Article  CAS  Google Scholar 

  28. Siok-Koon Y, Lay-Gaik O, Ting-Jin L, Min-Tze L (2009) Antihypertensive properties of plant-based prebiotics. Int J Mol Sci 10:3517–3530

    Article  Google Scholar 

  29. Večeřa R, Orolin J, Škottová N, Kazdová L, Oliyarnik O, Ulrichová J, Šmináek V (2007) The influence of Maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat. Plant Foods for Hum Nutr 62:59–63

    Article  Google Scholar 

  30. Beylot M (2005) Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br J Nutr 93(suppl 1):S163–S168

    Article  CAS  Google Scholar 

  31. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Investigation 114:147–152

    CAS  Google Scholar 

  32. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115:1343–1351

    CAS  Google Scholar 

  33. Jurgoński A, Juśkiewicz J, Zduńczyk Z (2008) Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods for Hum Nutr 63:176–182

    Article  Google Scholar 

  34. Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS (2002) Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 87(suppl 2):S255–S259

    Article  CAS  Google Scholar 

  35. Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28

    Article  CAS  Google Scholar 

  36. López MG, Mancilla-Margalli NA, Mendoza-Díaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. azul. J Agric Food Chem 51:7835–7840

    Article  Google Scholar 

  37. Mancilla-Margalli NA, López MG (2006) Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J Agric Food Chem 54:7832–7839

    Article  CAS  Google Scholar 

  38. Gómez E, Tuohy KM, Gibson GR, Klinder A, Costabile A (2010) In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. J Appl Microbiol 108:2114–2121

    Google Scholar 

Download references

Acknowledgments

This research was funded by UASLP Funds C08-FAI-04-27.31 and by CONACyT through a master of science scholarship (208836) granted to Juan Antonio Rendón-Huerta. We thank to BNP Qingdao Co (China) for kindly supplying Helianthus tuberosus fructans

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Pinos-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendón-Huerta, J.A., Juárez-Flores, B., Pinos-Rodríguez, J.M. et al. Effects of Different Sources of Fructans on Body Weight, Blood Metabolites and Fecal Bacteria in Normal and Obese non-diabetic and Diabetic Rats. Plant Foods Hum Nutr 67, 64–70 (2012). https://doi.org/10.1007/s11130-011-0266-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-011-0266-9

Keywords

Navigation