Skip to main content
Log in

Antigenotoxicity and Antioxidant Activity of Acerola Fruit (Malpighia glabra L.) at Two Stages of Ripeness

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Genotoxic and antigenotoxic effects of acerola fruit at two stages of ripeness were investigated using mice blood cells. The results show that no ripeness stage of acerola extracts presented any genotoxic potential to damage DNA (Comet assay) or cytotoxicity (MTT assay). When antigenotoxic activity was analyzed, unripe fruit presented higher DNA protection than ripe fruit (red color) extract. The antioxidant capacity of substances also showed that unripe samples inhibit the free radical DPPH more significantly than the ripe ones. The results about determination of compounds made using HPLC showed that unripe acerola presents higher levels of vitamin C as compared to ripe acerola. Thus, vitamin C and the complex mixture of nutrients of Malpighia glabra L., and especially its ripeness stages, influenced the interaction of the fruit extract with the DNA. Acerola is usually consumed when ripe (red fruit), although it is the green fruit (unripe) that has higher potential as beneficial to DNA, protecting it against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AEAC:

Ascorbic acid equivalent antioxidant capacity

AOA:

Antioxidant activity

DF:

Damage frequency

DI:

Damage index

DNA:

Deoxyribonucleic acid

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

DPPH:

2,2-diphenyl-1-picrylhydrazyl radical

EDTA:

Ethylenediaminetetraacetic acid

HCl:

Hydrochloric acid

HCT-8:

Tumor line of human colon

H2O2 :

Hydrogen peroxide

HPLC:

High performance liquid chromatography

H3PO4 :

Phosphoric acid

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

MDAMDB-435:

Tumor line of human breast

MeOH:

Methanol

MTT:

3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide salt

PBS:

Phosphate buffered saline

RDA:

Recommended Dietary Allowance

SF-295:

Tumor line of human nervous system

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Kusamran WR, Tepswan A, Kupradinun P (1998) Antimutagenic and anticarcinogenic potentials of some Thai vegetables. Mutat Res 402:247–258

    CAS  Google Scholar 

  2. Nakamura YK, Suganuma E, Kuijama N, Sato K, Ohtsuki K (1998) Comparative bio-antimutagenicity of common vegetables and traditional vegetables in Kyoto. Biosci Biotechnol Biochem 62:1161–1165

    Article  CAS  Google Scholar 

  3. Nogueira MEI, Passoni MH, Biso FI, Longo MC, Cardoso CRP, dos Santos LC, Varanda EA (2006) Investigation of genotoxic and antigenotoxic activities of Melampodium divaricatum in Salmonella typhimurium. Toxicol In Vitro 20:361–366

    Article  CAS  Google Scholar 

  4. Machado UD (1992) Nordeste-EMBRAPA: Relatório: Avaliação e proposições. Sindicato Nacional dos Trabalhadores de Pesquisa e Desenvolvimento Agropecuário, Brasília

    Google Scholar 

  5. Vendramini AL, Trugo LC (2000) Chemical composition of acerola fruit (Malpighia glabra L.) at three stages of maturity. Food Chem 71:195–198

    Article  CAS  Google Scholar 

  6. Kawaguchi M, Tanabe H, Nagamine K (2007) Isolation and characterization of a novel flavonoid possessing a 4,2″-glycosidic linkage from green mature acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem 71:1130–1135

    Article  CAS  Google Scholar 

  7. USDA (National Nutrient Database for Standard) (2010) http://search.nal.usda.gov/nalsearch/> (accessed 01.10.10)

  8. Freitas CAS, Maia GA, Costa JMC, Figueiredo RW, Souza PHM (2006) Acerola: produção, composição, aspectos nutricionais e produtos. R Bras Agrociência 12:395–400, in portuguese

    Google Scholar 

  9. Halliwell B (1987) Oxidants and human disease: Some new concepts. FASEB J 1:358–364

    CAS  Google Scholar 

  10. Sizer FS, Whitney EN (2003) Nutrition: concepts and controversies, 9th edn. Thompson Wadsworth, Belmont

    Google Scholar 

  11. Hanamura T, Uchida E, Aoki H (2008) Changes of the composition in acerola (Malpighia emarginata DC.) fruit in relation to cultivar, growing region and maturity. J Sci Food Agric 88:1813–1820

    Article  CAS  Google Scholar 

  12. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: A review. Trop J Pharm Res 7:1089–1099

    Google Scholar 

  13. Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liver Dis 34:105–110

    Article  Google Scholar 

  14. Campelo E, Martins M, Carvalho I, Pedrosa E (1998) Teores de vitamina C em polpas de acerola (Malpighia glabra L.) congeladas. B CEPPA 16:107–113, in portuguese

    Google Scholar 

  15. OECD (1997) OECD guidelines for the testing of chemicals: in vitro mammalian chromosome aberration test, revised and new guidelines, adopted 1997. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  16. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23:171–182

    Article  CAS  Google Scholar 

  17. Szeto YT, Collins AR, Benzie IFF (2002) Effects of dietary antioxidants on DNA damage on lysed cells using a modified comet assay procedure. Mutat Res 500:31–38

    CAS  Google Scholar 

  18. Kapiszewska M, Soltys E, Visioli F, Cierniak A, Zajac G (2005) The protective ability of the Mediterranean plant extract against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol 56:183–197

    Google Scholar 

  19. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  20. Silva J, Freitas TRO, Marinho JR, Speit G, Erdtmann B (2000) An alkaline single-cell gel electrophoresis (comet assay) assay for environmental biomonitoring with native rodents. Genet Mol Biol 23:241–245

    Article  Google Scholar 

  21. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186

    Article  CAS  Google Scholar 

  22. British Pharmacopoeia (2007) Version 11.0-Cd-Rom. Her Majesty’s Stationary Office, London

    Google Scholar 

  23. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhidrazyl. Biosci Biotechnol Biochem 62:1201–1204

    Article  CAS  Google Scholar 

  24. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  Google Scholar 

  25. Higdon J (2009) Vitamin C Linnus Pauling Institute Micronut Res Opt Health. <http://lpi.oregonstate.edu/infocenter/vitamins/vitaminC/> (accessed 01.10.10)

  26. Franke SIR, Prá D, Silva J, Erdtmann B, Henriques JAP (2005) Possible repair action of vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res 583:75–84

    CAS  Google Scholar 

  27. Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75

    Article  CAS  Google Scholar 

  28. Paredes-López O, Cervantes-Ceja M, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum Nutr 65:299–308

    Article  Google Scholar 

  29. Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56:1415–1422

    Article  CAS  Google Scholar 

  30. Jawaheer B, Goburdhum D, Rugoo A (2003) Effect of processing and storage of guava into jam and juice on ascorbic acid content. Plant Foods Hum Nutr 51:1–12

    Article  Google Scholar 

  31. Butt VS (1980) Direct oxidases and related enzymes. In: Stumpf PK, Conn EE (eds), The Biochemistry of Plants: A Comprehensive Treatise. Academic, New York, pp 81–123, 2

    Google Scholar 

  32. Asenjo CF, Penaloza A, Medina P (1960) Characterization of ascorbase present in the fruit of the Malpighia punicifolia L. FASEB J 19:1–1

    Google Scholar 

Download references

Acknowledgements

The authors also thank Nutrilite Farm (Ceará, Brazil) for help and assistance. This work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) and Lutheran University of Brazil (ULBRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Nunes, R., Kahl, V.F.S., da Silva Sarmento, M. et al. Antigenotoxicity and Antioxidant Activity of Acerola Fruit (Malpighia glabra L.) at Two Stages of Ripeness. Plant Foods Hum Nutr 66, 129–135 (2011). https://doi.org/10.1007/s11130-011-0223-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-011-0223-7

Keywords

Navigation