Plant Foods for Human Nutrition

, Volume 66, Issue 2, pp 157–162 | Cite as

Antioxidant Properties of Amaranthus hypochondriacus Seeds and their Effect on the Liver of Alcohol-Treated Rats

  • Viviana Romina Lucero López
  • Gabriela Silvina Razzeto
  • María Sofía Giménez
  • Nora Lilian EscuderoEmail author


Amaranth constitutes a valuable pseudocereal, due to its nutritional quality and its nutraceutical properties, which contribute to improve human health. This work evaluated the effect of a diet based on Amaranthus hypochondriacus (Ah) seed on oxidative stress and antioxidant status in the liver of rats sub-chronically exposed to ethanol. The seed extract was investigated for antioxidant capacity in vitro, showing an adequate content of total phenols and antioxidant activity elevated. For in vivo assays, four groups of six rats each were fed with an AIN-93 M diet for 28 days. In groups III and IV casein was replaced by Ah as the protein source; groups II and IV were received ethanol in the drinking water (20% v/v). When comparing groups IV and II, the following was observed: significant decrease in the activity of aspartate aminotransferase and content of malondialdehyde (p < 0.001) in serum; decrease of malondialdehyde and increase in the activity and gene expression of Cu,Zn-superoxide dismutase, also, decrease in the NADPH oxidase transcript levels (p < 0.05) in liver. Our data suggest that Ah is a good source of total phenols and exerts a protective effect in serum and in liver of rats intoxicated with ethanol.


Amaranthus hypochondriacus Antioxidant enzymes Ethanol Oxidative stress Total phenols 



alcohol dehydrogense


Amaranthus hypochondriacus


alkaline phosphatase


Alanine aminotransferase


Aspartate aminotransferase


Buthylated hydroxy toluene




Cytochrome P450-2E1






Gamma glutamyl transferase


Glutathione peroxidase




Moloney Murine Leukemia Virus Reverse Transcriptase


Nicotinamide adenine dinucleotide phosphate


Nitric oxide

NO test

Scavenging activity against nitric oxide


NADPH oxidase


Polymerase chain reaction


Reactive nitrogen species


Reactive oxygen species


Radical scavenging activity


Reverse transcription


Superoxide dismutase


Thiobarbituric Acid Reactive Substances





We are grateful to Engineer Guillermo Peiretti (Professor of the Agronomical and Veterinary Sciences Department National University of Rio Cuarto) for kindly providing the seeds employed in this work, obtained as an original variety from an experimental cultivation.


  1. 1.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  2. 2.
    Cuevas-Rodríguez EO, Dia VP, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Gonzalez de Mejia E, Lila MA (2010) Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts. J Agric Food Chem 58(17):9542–9548CrossRefGoogle Scholar
  3. 3.
    Nanji AA, Griniuviene B, Sadrzadeh SM, Levitsky S, McCully JD (1995) Effect of type of dietary fat and ethanol on antioxidant enzyme mRNA induction in rat liver. J Lipid Res 36(4):736–744Google Scholar
  4. 4.
    Liu RH (2003) Health benefits of fruits and vegetables are from additive and synergistic combination of phytochemicals. Am J Clin Nutr 78:517S–520SGoogle Scholar
  5. 5.
    Bressani R (2003) Amaranth. In: Caballero B (ed), Encyclopedia of Food Sciences and Nutrition, 2nd edn. Elsevier, Maryland, pp 166–173CrossRefGoogle Scholar
  6. 6.
    Pedersen HA (2010) Synthesis and quantitation of six phenolic amides in Amaranthus spp. J Agric Food Chem 58:6306–6311CrossRefGoogle Scholar
  7. 7.
    Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value of pseudocereals and their increasing use as functional gluten free ingredients. Int J Food Sci Nutr 60(4):240–257CrossRefGoogle Scholar
  8. 8.
    Vinson JA, Proch J, Bose P (2001) Determination of the quantity and quality of polyphenol antioxidants in foods and beverages. Methods Enzymol 335:103–114CrossRefGoogle Scholar
  9. 9.
    Emmons CL, Peterson DM, Paul GL (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem 47:4894–4898CrossRefGoogle Scholar
  10. 10.
    Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904Google Scholar
  11. 11.
    Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116(5):865–869Google Scholar
  12. 12.
    Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardès-Albert M (1994) Antioxidant action of Ginkgo biloba extracts EGb 761. Methods Enzymol 234:462–475CrossRefGoogle Scholar
  13. 13.
    Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80(4):1144–1152CrossRefGoogle Scholar
  14. 14.
    Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328CrossRefGoogle Scholar
  15. 15.
    Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem Anal 13:8–17CrossRefGoogle Scholar
  16. 16.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 Purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951Google Scholar
  17. 17.
    Vengeliene V, Vollmayr B, Henn FA, Spanagel R (2005) Voluntary alcohol intake in two rat lines selectively bred for learned helpless and non-helpless behavior. Psychopharmacology 178(2–3):125–132CrossRefGoogle Scholar
  18. 18.
    Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431CrossRefGoogle Scholar
  19. 19.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefGoogle Scholar
  20. 20.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  21. 21.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein. J Biol Chem 244:6049–6055Google Scholar
  22. 22.
    Flohé L, Otting F (1984) Superoxide assays. Methods Enzymol 105:93–104CrossRefGoogle Scholar
  23. 23.
    Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121CrossRefGoogle Scholar
  24. 24.
    Snedecor GW, Cochran WG (1980) Statistical Methods, 7th edn. Iowa State University Press, AmesGoogle Scholar
  25. 25.
    Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life: a review. Plant Foods Hum Nutr 65:299–308CrossRefGoogle Scholar
  26. 26.
    Czerwinski J, Bartnikowska E, Leontowicz H, Lange E, Leontowicz M, Katrich E, Trakhtenberg S, Gorinstein S (2004) Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol containing diets. J Nutr Biochem 15:622–629CrossRefGoogle Scholar
  27. 27.
    Taylor LP, Briggs WR (1990) Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell 2:115–127CrossRefGoogle Scholar
  28. 28.
    Dube A, Bharti S, Laloraya MM (1992) Inhibition of anthocyanin synthesis by cobaltous ions in the first internode of Sorghum bicolor L. Moench. J Exp Bot 43(10):1379–1382CrossRefGoogle Scholar
  29. 29.
    Nsimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106(2):760–766CrossRefGoogle Scholar
  30. 30.
    McDonough KH (2003) Antioxidant nutrients and alcohol. Toxicology 189:89–97CrossRefGoogle Scholar
  31. 31.
    Dalle Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406CrossRefGoogle Scholar
  32. 32.
    Morifuji M, Aoyama Y (2002) Dietary orotic acid affects antioxidant enzyme mRNA levels and oxidative damage to lipids and proteins in rat liver. J Nutr Biochem 13:403–410CrossRefGoogle Scholar
  33. 33.
    Eom S-Y, Zhang YW, Ogawa M, Oyama T, Isse T, Kang J-W, Lee C-J, Kim Y-D, Kawamoto T, Kim H (2007) Activities of antioxidant enzymes induced by ethanol exposure in aldehyde dehydrogenase 2 knockout mice. J Health Sci 53(4):378–381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Viviana Romina Lucero López
    • 1
  • Gabriela Silvina Razzeto
    • 1
  • María Sofía Giménez
    • 1
  • Nora Lilian Escudero
    • 1
    Email author
  1. 1.Department of Biochemistry and Biology Sciences, Faculty of Chemistry, Biochemistry and PharmacyNational University of San Luis, IMIBIO-SL, CONICET, Chacabuco and PederneraSan LuisArgentina

Personalised recommendations