Plant Foods for Human Nutrition

, Volume 65, Issue 2, pp 152–157 | Cite as

Physicochemical, Rheological and Structural Characteristics of Starch in Maize Tortillas

  • Juan P. Hernández-Uribe
  • Gonzalo Ramos-López
  • Hernani Yee-Madeira
  • Luis A. Bello-Pérez
Original Paper


Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50–56 °C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105–123 °C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2θ = 17º and 23º, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role.


Dynamic rheology Molar mass Physicochemical characteristics Pigmented maize Tortilla 



The authors acknowledge the economic support from SIP-IPN, COFAA-IPN, EDI-IPN and LANFOOD. One of the authors (JPHU) acknowledges the scholarships from SEPI-IPN and PIFI-IPN.


  1. 1.
    Waliszewski KN, Estrada Y, Pardio V (2004) Sensory properties changes of fortified nixtamalized corn flour with lysine and tryptophan during storage. Plant Foods Hum Nutr 59:51–54CrossRefGoogle Scholar
  2. 2.
    Serna-Saldivar SO, Amaya-Guerra CA, Herrera-Macias P, Melesio-Cuellar JL, Preciado-Ortiz RE, Terron-Ibarra AD, Vazquez-Carrillo G (2008) Evaluation of the lime-cooking and tortilla making properties of quality protein maize hybrids grown in Mexico. Plant Foods Hum Nutr 63:119–125CrossRefGoogle Scholar
  3. 3.
    Arámbula VG, Barrón AL, Hernández GJ, Moreno ME, Luna BG (2001) Efecto del tiempo de cocimiento y reposo del grano de maíz (Zea mays L.) nixtamalizado, sobre las características fisicoquímicas, reológicas, estructurales y texturales del grano, masa y tortillas de maíz. Arch Latinoam Nutr 51:187–194Google Scholar
  4. 4.
    Gómez MH, Lee JK, McDonough CM, Waniska RD, Rooney LW (1992) Corn starch changes during tortilla and tortilla chip processing. Cereal Chem 69:275–279Google Scholar
  5. 5.
    Wajira SR, Wassinger AB, Jackson DS (2007) Extraction and characterization of starch from alkaline cooked corn masa. Cereal Chem 84:415–422CrossRefGoogle Scholar
  6. 6.
    Mendez-Montealvo G, Sanchez-Rivera MM, Paredes-López O, Bello-Pérez LA (2006) Thermal and rheological properties of nixtamalized maize starch. Int J Biol Macromol 40:59–63CrossRefGoogle Scholar
  7. 7.
    Mendez-Montealvo G, Trejo-Espino JL, Paredes-López O, Bello-Pérez LA (2007) Physicochemical and morphological characteristics of nixtamalized maize starch. Starch/Stärke 59:277–283CrossRefGoogle Scholar
  8. 8.
    Fernandez DA, Waniska RD, Rooney LW (1999) Changes in starch properties of corn tortillas during storage. Starch/Stärke 4:136–140CrossRefGoogle Scholar
  9. 9.
    Aguirre-Cruz A, Alvarez-Castillo A, Yee-Madeira H, Bello-Perez LA (2008) Production of fiber-rich powder by the acid treatment of unripe banana flour. J Appl Polym Sci 109:382–387CrossRefGoogle Scholar
  10. 10.
    Millan-Testa CE, Méndez-Montealvo MG, Ottenhof MA, Farhat IA, Bello-Pérez LA (2005) Determination of the molecular and structural characteristics of Okenia, Mango, and Banana starches. J Agric Food Chem 53:495–501CrossRefGoogle Scholar
  11. 11.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  12. 12.
    Morris VJ (1990) Starch gelation and retrogradation. Trends Food Sci Tech 1:2–6CrossRefGoogle Scholar
  13. 13.
    Gudmunsson M (1994) Retrogradation of starch and the role of its components. Thermochimica Acta 246:329–341CrossRefGoogle Scholar
  14. 14.
    Liu H, Yu L, Chen L, Li L (2007) Retrogradation of corn starch after thermal treatment at different temperature. Carbohydr Polym 69:756–762CrossRefGoogle Scholar
  15. 15.
    Agama-Acevedo E, Ottenhof MA, Farhat IA, Paredes-López O, Ortíz-Cereceres J, Bello-Pérez LA (2005) Aislamiento y caracterización del almidón de maíces pigmentados. Agrociencia 39:419–429Google Scholar
  16. 16.
    Utrilla-Coello RG, Agama-Acevedo E, Barba de la Rosa AP, Martínez-Salgado JL, Rodríguez-Ambriz SL, Bello-Pérez LA (2009) Blue maize: morphology and starch synthase characterization of starch granule. Plant Foods Hum Nutr 64:18–24CrossRefGoogle Scholar
  17. 17.
    Bello-Pérez LA, De Francisco A, Agama-Acevedo E, Gutierrez-Meraz F, García-Suárez FJ (2005) Morphological and molecular studies of banana starch. Food Sci Technol Int 11:367–372CrossRefGoogle Scholar
  18. 18.
    Sievert D, Czuchajowska Z, Pomeranz Y (1991) Enzyme-resistant starch. III. X-ray diffraction of autoclaved amylomaize VII starch and enzyme-resistant starch residues. Cereal Chem 68:86–91Google Scholar
  19. 19.
    Yoon JY, Lee YE (1998) Influence of amylose content on formation and characteristics of enzyme-resistant starch. J Food Sci Nutr 3:303–308Google Scholar
  20. 20.
    Gidley MJ, Cook D, Dark AH, Hoffmann RA, Russell AL, Grenwell P (1995) Molecular order and structure in enzyme-resistant retrograded starch. Carbohydr Polym 28:23–31CrossRefGoogle Scholar
  21. 21.
    Hernández-Uribe JP, Agama-Acevedo E, Islas-Hernández JJ, Tovar J, Bello-Pérez LA (2007) Chemical composition and in vitro starch digestibility of pigmented corn tortilla. J Sci Food Agric 87:2482–2487CrossRefGoogle Scholar
  22. 22.
    Smits ALM, Ruhnau FC, Vliegenthart JFG, Van Soest JJG (1998) Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch/Stärke 50:478–483CrossRefGoogle Scholar
  23. 23.
    Goodfellow BJ, Wilson RH (1990) A Fourier transforms IR study of gelation of amylose and amylopectin. Biopolymer 30:1183–1190CrossRefGoogle Scholar
  24. 24.
    Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organization of the external region of the starch granule as determined by infrared spectroscopy. Inter J Biol Macromol 31:79–85CrossRefGoogle Scholar
  25. 25.
    Karim A, Norziah MH, Seow CC (2000) Methods for the study of starch retrogradation. Food Chem 71:9–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Juan P. Hernández-Uribe
    • 1
  • Gonzalo Ramos-López
    • 2
  • Hernani Yee-Madeira
    • 3
  • Luis A. Bello-Pérez
    • 1
  1. 1.Centro de Desarrollo de Productos Bióticos del IPNYautepecMéxico
  2. 2.Centro de Investigación de Ciencia Aplicada y Tecnología AvanzadaQuerétaro, QuerétaroMéxico
  3. 3.Departamento de FísicaEscuela Superior de Física y Matemáticas-IPNMéxico, D.F.México

Personalised recommendations