Plant Foods for Human Nutrition

, Volume 64, Issue 3, pp 193–198 | Cite as

Yam Contributes to Improvement of Glucose Metabolism in Rats

  • Naoto Hashimoto
  • Takahiro Noda
  • Sun-Ju Kim
  • Md Zaidul Islam Sarker
  • Hiroaki Yamauchi
  • Shigenobu Takigawa
  • Chie Matsuura-Endo
  • Tatsuro Suzuki
  • Kyu-Ho Han
  • Michihiro Fukushima
Original Paper

Abstract

To investigate whether yam improves glucose metabolism, yam-containing diets were given to Wistar rats. In a short-term experiment, fasted-rats were given 1.0 g of a control and 20% yam-containing diets. At 60 min after start of the feeding, glucose level in the yam diet group was lower or tended to be lower than that in the control diet. Insulin levels at 30 min and 60 min were significantly lower than those in the control group. In a long-term experiment, a normal diet (N) or 25% high fat diets with (Y) or without 15% yam powder (HF) were given to rats for 4 weeks. At 4 weeks, in an oral glucose tolerance test, the area under the curve (AUC) of plasma glucose level was higher in the HF group than that in the N group, whereas those in the Y groups did not differ from that in the N group. Glycosylated hemoglobin levels had similar tendency to the AUCs. Plasma leptin levels in the Y groups were significantly higher than that in the N group. In conclusion, yam may contribute to improvement of glucose metabolism. Additionally, we speculated that leptin level is possibly involved in the insulin-response to yam diets.

Keywords

Glycemia Glycemic index Insulinemia Leptin Rats Yams 

Abbreviations

AUC

area under the curve

DM

diabetes mellitus

Exp.

experiment

GH

glycosylated hemoglobin

GI

glycemic index

HF

high fat diet

RS

resistant starch

SEM

standard error of the mean

TG

triacylglyceride

Notes

Acknowledgement

This work was supported by a grant from Cooperation for Innovative Technology and Advanced Research in Evolutional Area (City Area Program). The authors thank Minako Saito with her skillful assistance.

References

  1. 1.
    Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, Charbonnel B, Girard J (2001) Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 27:415–423Google Scholar
  2. 2.
    Nelson BA, Robinson KA, Buse MG (2002) Defective Akt activation is associated with glucose— but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab 282:E497–506Google Scholar
  3. 3.
    Chaikomin R, Rayner CK, Jones KL, Horowitz M (2006) Upper gastrointestinal function and glycemic control in diabetes mellitus. World J Gastroenterol 12:5611–5621Google Scholar
  4. 4.
    Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, Jenkins AL, Axelsen M (2002) Glycemic index: overview of implications in health and disease. Am J Clin Nutr 76:266S–273SGoogle Scholar
  5. 5.
    Wright E Jr, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60:308–314CrossRefGoogle Scholar
  6. 6.
    Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7CrossRefGoogle Scholar
  7. 7.
    Augustin LS, Franceschi S, Jenkins DJ, Kendall CW, La Vecchia C (2002) Glycemic index in chronic disease: a review. Eur J Clin Nutr 56:1049–1071CrossRefGoogle Scholar
  8. 8.
    Wylie-Rosett J, Segal-Isaacson CJ, Segal-Isaacson A (2004) Carbohydrates and increases in obesity: does the type of carbohydrate make a difference? Obes Res 12(Suppl 2):124S–129SCrossRefGoogle Scholar
  9. 9.
    Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL, Alberti KG (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1:1392–1394CrossRefGoogle Scholar
  10. 10.
    Williams JA, Lai CS, Corwin H, Ma Y, Maki KC, Garleb KA, Wolf BW (2004) Inclusion of guar gum and alginate into a crispy bar improves postprandial glycemia in humans. J Nutr 134:886–889Google Scholar
  11. 11.
    Vuksan V, Sievenpiper JL, Xu Z, Wong EY, Jenkins AL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Stavro MP (2001) onjac-Mannan and American ginsing: emerging alternative therapies for type 2 diabetes mellitus. J Am Coll Nutr 20:370S–380S discussion 381 S-383 SGoogle Scholar
  12. 12.
    van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 28:154–163CrossRefGoogle Scholar
  13. 13.
    Casirola DM, Ferraris RP (2006) Alpha-glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism 55:832–841CrossRefGoogle Scholar
  14. 14.
    Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M (2006) Antihyperglycemic effect of polyphenols from Acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem 70:1813–1820CrossRefGoogle Scholar
  15. 15.
    Iwai K, Kim MY, Onodera A, Matsue H (2006) Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 54:4588–4592CrossRefGoogle Scholar
  16. 16.
    Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M, Feng X, Xia X (2007) Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum Nutr 62:1–6CrossRefGoogle Scholar
  17. 17.
    Hee-Jeong J, Ming-Jung K, Tae-Jin S, Hyuu-A K, Sung-Ja Y, Soo-Kyung L, Hwa-Jae L, Boo-Hyeong B, Jung-In K (2006) The hypoglycemic effect of Saururus chinensis Baill in animal models of diabetes mellitus. Food Sci. Biotechnol. 15:413–417Google Scholar
  18. 18.
    Hikino H, Konno C, Takahashi M, Murakami M, Kato Y, Karikura M, Hayashi T (1986) Isolation and hypoglycemic activity of dioscorans A, B, C, D, E, and F; glycans of Dioscorea japonica rhizophors. Planta Med 52:168–171CrossRefGoogle Scholar
  19. 19.
    Tsukui M, Nagashima T, Sato H, Kozuma TT, Tanimura W (1999) Characterization of Yam (Dioscorea opposita Thunb.) Mucilage and Polysaccharide with Different Varieties. Nippon Shokuhin Kagaku Kogaku Kaishi 46:575–580Google Scholar
  20. 20.
    Hashimoto N, Hara H (2003) Dietary amino acids promote pancreatic protease synthesis at the translation stage in rats. J Nutr 133:3052–3057Google Scholar
  21. 21.
    Bunn HF, Gabbay KH, Gallop PM (1978) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27CrossRefGoogle Scholar
  22. 22.
    Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, Wheeler MB, LeRoith D (2005) Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology 146:4024–4035CrossRefGoogle Scholar
  23. 23.
    Steinberg GR, Rush JW, Dyck DJ (2003) AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284:E648–654Google Scholar
  24. 24.
    Dube JJ, Bhatt BA, Dedousis N, Bonen A, O’Doherty RM (2007) Leptin, skeletal muscle lipids, and lipid-induced insulin resistance. Am J Physiol Regul Integr Comp Physiol 293:R642–650Google Scholar
  25. 25.
    El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105:1827–1832CrossRefGoogle Scholar
  26. 26.
    Yamazaki M, Nishimura T (1992) Induction of neutrophil accumulation by vegetable juice. Biosci Biotechnol Biochem 56:150–151CrossRefGoogle Scholar
  27. 27.
    McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN (2005) Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem Toxicol 43:1667–1672CrossRefGoogle Scholar
  28. 28.
    McAnuff-Harding MA, Omoruyi FO, Asemota HN (2006) Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides). Life Sci 78:2595–2600CrossRefGoogle Scholar
  29. 29.
    Hou WC, Hsu FL, Lee MH (2002) Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med 68:1072–1076CrossRefGoogle Scholar
  30. 30.
    Jeon JR, Lee JS, Lee CH, Kim JY, Kim SD, Nam DH (2006) Effect of ethanol extract of dried Chinese yam (Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch Pharm Res 29:348–353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Naoto Hashimoto
    • 1
  • Takahiro Noda
    • 1
  • Sun-Ju Kim
    • 1
  • Md Zaidul Islam Sarker
    • 1
    • 3
  • Hiroaki Yamauchi
    • 1
  • Shigenobu Takigawa
    • 1
  • Chie Matsuura-Endo
    • 1
  • Tatsuro Suzuki
    • 1
  • Kyu-Ho Han
    • 2
  • Michihiro Fukushima
    • 2
  1. 1.Memuro Upland Farming Research Station, National Agricultural Research Center for Hokkaido RegionMemuroJapan
  2. 2.Department of Agriculture and Life ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  3. 3.Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations