Advertisement

Plant Foods for Human Nutrition

, Volume 64, Issue 2, pp 86–93 | Cite as

Sunflower Protein Hydrolysates Reduce Cholesterol Micellar Solubility

  • Cristina Megías
  • Justo Pedroche
  • María del Mar Yust
  • Manuel Alaiz
  • Julio Girón-Calle
  • Francisco Millán
  • Javier VioqueEmail author
Original Paper

Abstract

Plant protein hydrolysates are a source of bioactive peptides. There are peptides that decrease the micellar cholesterol solubility from bile acids and therefore may reduce in vivo cholesterol absorption. The presence of these peptides in sunflower protein hydrolysates has been studied. Sunflower protein hydrolysates produced with alcalase plus flavourzyme or with pepsin plus pancreatin inhibited in some degree the cholesterol incorporation to micelles. Protein hydrolysates generated after 30 min of hydrolysis with alcalase, and after 30 min of hydrolysis with pepsin, were the inhibitoriest of the cholesterol incorporation to micelles. The average amino acid hydrophobicity of inhibitory peptides in cholesterol micelles was higher than the observed in the corresponding protein hydrolysates. This high hydrophobicity probably favours their inclusion in the lipid micelles. In vivo, this inhibition may translate in a decrease of cholesterol absorption. Reported results show that a combination of different characteristics such as peptide size or hydrophobicity may be responsible of the inhibitory activity of generated peptides.

Keywords

Sunflower Protein hydrolysate Bioactive peptides Cholesterol solubility 

Notes

Acknowledgements

This work was supported by research grants AGL 2004-03930 (F.M.) and AGL 2005-01120 (J.G.-C.) from the Spanish Ministry of Education and Science, partially supported by FEDER funds from EU.

References

  1. 1.
    Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Bautista J, Millán F (1999) Production and characterization of an extensive rapeseed protein hydrolysate. J Am Oil Chem Soc 76:819–823 doi: 10.1007/s11746-999-0071-x CrossRefGoogle Scholar
  2. 2.
    Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F (2000) Partially hydrolyzed rapeseed protein isolates with improved functional properties. J Am Oil Chem Soc 77:447–450 doi: 10.1007/s11746-000-0072-y CrossRefGoogle Scholar
  3. 3.
    Villanueva A, Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Bautista J, Millán F (1999) Peptide characteristics of sunflower protein hydrolysates. J Am Oil Chem Soc 76:1455–1460 doi: 10.1007/s11746-999-0184-2 CrossRefGoogle Scholar
  4. 4.
    Vioque J, Clemente A, Pedroche J, Yust MM, Millán F (2001) Obtención y aplicaciones de hidrolizados proteicos. Grasas Aceites 52:132–136Google Scholar
  5. 5.
    Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163–169 doi: 10.1016/j.copbio.2007.01.013 CrossRefGoogle Scholar
  6. 6.
    Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Yust MM, Millán F (2000) Péptidos bioactivos en proteínas de reserva. Grasas Aceites 51:361–365Google Scholar
  7. 7.
    Ros E (2000) Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151:357–379 doi: 10.1016/S0021-9150(00)00456-1 CrossRefGoogle Scholar
  8. 8.
    Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, Tadashi K, Kuwata T (2001) Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun 281:11–17 doi: 10.1006/bbrc.2001.4298 CrossRefGoogle Scholar
  9. 9.
    Zhong F, Liu J, Ma J, Shoemaker CF (2007a) Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40:661–667 doi: 10.1016/j.foodres.2006.11.011 CrossRefGoogle Scholar
  10. 10.
    Zhong F, Zhang X, Ma J, Shoemaker CF (2007b) Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates. Food Res Int 40:756–762 doi: 10.1016/j.foodres.2007.01.005 CrossRefGoogle Scholar
  11. 11.
    Pedroche J, Yust MM, Lqari H, Megias C, Girón-Calle J, Alaiz M, Vioque J, Millan F (2007) Obtaining of Brassica carinata protein hydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Res Int 40:931–938 doi: 10.1016/j.foodres.2007.04.001 CrossRefGoogle Scholar
  12. 12.
    Megías C, Yust MM, Pedroche J, Lquari H, Girón-Calle J, Alaiz M, Millan F, Vioque J (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52:1928–1932 doi: 10.1021/jf034707r CrossRefGoogle Scholar
  13. 13.
    Megías C, Pedroche J, Yust MM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2006) Affinity purification of angiotensin converting enzyme inhibitory peptides using immobilized ACE. J Agric Food Chem 54:7120–7124 doi: 10.1021/jf061488b CrossRefGoogle Scholar
  14. 14.
    Megías C, Pedroche J, Yust MM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2007) Affinity purification of copper-chelating peptides from sunflower protein hydrolysates. J Agric Food Chem 55:6509–6514 doi: 10.1021/jf0712705 CrossRefGoogle Scholar
  15. 15.
    Lqari H, Vioque J, Pedroche J, Millán F (2002) Lupinus angustifolius protein isolates: chemical composition, functional properties and protein characterization. Food Chem 76:349–356 doi: 10.1016/S0308-8146(01)00285-0 CrossRefGoogle Scholar
  16. 16.
    Adler-Nissen J (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27:1256–1262 doi: 10.1021/jf60226a042 CrossRefGoogle Scholar
  17. 17.
    Alaiz M, Navarro JL, Giron J, Vioque E (1992) Amino acid analysis by high-performance liquid chromatography after derivatization with diethylethoxymethylenemalonate. J Chromatog 591:181–186 doi: 10.1016/0021-9673(92)80236-N CrossRefGoogle Scholar
  18. 18.
    Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K (1999) Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells. J Nutr 129:1725–1730Google Scholar
  19. 19.
    Tossavainen O, Outinen M, Harju M, Makinen-Kiljunen S (1996) Removal of beta-lactoglobulin residues from an enzymatic whey protein hydrolysate. Milchwissenschaft 51:628–632Google Scholar
  20. 20.
    Kwon DY, Oh SW, Lee JS, Yang HJ, Lee SH, Lee JH (2002) Amino acid substitution of hypocholesterolemic peptide originated from glycinin hydrolysate. Food Sci Biotechnol 11:55–61Google Scholar
  21. 21.
    Sugano M, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, Kimoto M (1988) The hipocholesterolemic action of the undigested fraction of soybean protein in rats. Atherosclerosis 72:115–122 doi: 10.1016/0021-9150(88)90071-8 CrossRefGoogle Scholar
  22. 22.
    Hori G, Wang MF, Chan YC, Komatsu T, Wong YC, Chen TH, Yamamoto K, Nagaoka S, Yamamoto S (2001) Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem 65:72–78 doi: 10.1271/bbb.65.72 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cristina Megías
    • 1
  • Justo Pedroche
    • 1
  • María del Mar Yust
    • 1
  • Manuel Alaiz
    • 1
  • Julio Girón-Calle
    • 1
  • Francisco Millán
    • 1
  • Javier Vioque
    • 1
    Email author
  1. 1.Instituto de la Grasa (C.S.I.C.)SevillaSpain

Personalised recommendations