Plant Foods for Human Nutrition

, Volume 63, Issue 4, pp 147–156 | Cite as

Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review

  • Agnieszka SzajdekEmail author
  • E. J. Borowska
Original Paper


This study characterizes biologically active compounds of berry fruits, including non-nutritive compounds such as phenolic compounds, including anthocyanins, phenolic acids, stilbens and tannins, as well as nutritive compounds such as carotenoids and vitamin C. It discusses the biological activity of those compounds, in particular their antioxidant properties and the resulting health benefits.


Antioxidant activity Berry fruits Biological activity Biologically active compounds Medicinal properties 


  1. 1.
    Visioli F, Borsani L, Galli C (2000) Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cardiovasc Res 47:419–425. doi: 10.1016/S0008-6363(00)00053-5 CrossRefGoogle Scholar
  2. 2.
    La Vecchia C, Altieri A, Tavani A (2001) Vegetables, fruit, antioxidants and cancer: a review of Italian studies. Eur J Nutr 40:261–267. doi: 10.1007/s394-001-8354-9 CrossRefGoogle Scholar
  3. 3.
    Bazzano LA, Serdula MK, Liu S (2003) Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep 5:492–499. doi: 10.1007/s11883-003-0040-z CrossRefGoogle Scholar
  4. 4.
    Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122. doi: 10.1007/s11130-004-0049-7 CrossRefGoogle Scholar
  5. 5.
    Potter JD (2005) Vegetables, fruit, and cancer. Lancet 366:527–530. doi: 10.1016/S0140-6736(05)67077-8 CrossRefGoogle Scholar
  6. 6.
    Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306. doi: 10.1080/1040869059096 CrossRefGoogle Scholar
  7. 7.
    Santos-Cervantes ME, Ibarra-Zazueta ME, Loarca-Piña G, Paredes-López O, Delgado-Vargas F (2007) Antioxidant and antimutagenic activities of Randia echinocarpa fruit. Plant Foods Hum Nutr 62:71–77. doi: 10.1007/s11130-007-0044-x CrossRefGoogle Scholar
  8. 8.
    Yin X, Quan J, Kanazawa T (2008) Banana prevents plasma oxidative stress in healthy individuals. Plant Foods Hum Nutr 63:71–76. doi: 10.1007/s11130-008-0072-1 CrossRefGoogle Scholar
  9. 9.
    Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383. doi: 10.3109/10715769509145649 CrossRefGoogle Scholar
  10. 10.
    Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. doi: 10.1016/S0031-9422(00)00235-1 CrossRefGoogle Scholar
  11. 11.
    Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584. doi: 10.1016/S0955-2863(02)00208-5 CrossRefGoogle Scholar
  12. 12.
    Kanner J, Frankel E, Granit R, German B, Kinsella JE (1994) Natural antioxidants in grapes and wines. J Agric Food Chem 42:64–69. doi: 10.1021/jf00037a010 CrossRefGoogle Scholar
  13. 13.
    Kalt W, Forney CF, Martin A, Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47:4638–4644. doi: 10.1021/jf990266t CrossRefGoogle Scholar
  14. 14.
    Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 49:4076–4082. doi: 10.1021/jf010152t CrossRefGoogle Scholar
  15. 15.
    Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 50:519–525. doi: 10.1021/jf011062r CrossRefGoogle Scholar
  16. 16.
    Sellappan S, Akoh CC, Krewer G (2002) Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 50:2432–2438. doi: 10.1021/jf011097r CrossRefGoogle Scholar
  17. 17.
    Borowska J, Szajdek A (2003) Antioxidant activity of berry fruits and beverages. Pol J Natur Sc 14:521–528Google Scholar
  18. 18.
    Benvenuti S, Pellati F, Melegari M, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci 69:FCT164–FCT169Google Scholar
  19. 19.
    Häkkinen SH, Törrönen AR (2000) Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique. Food Res Int 33:517–524. doi: 10.1016/S0963-9969(00)00086-7 CrossRefGoogle Scholar
  20. 20.
    Wang SY, Lin H-S (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146. doi: 10.1021/jf9908345 CrossRefGoogle Scholar
  21. 21.
    Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem 50:893–898. doi: 10.1021/jf011212y CrossRefGoogle Scholar
  22. 22.
    Hakala M, Lapveteläinen A, Huopalahti R, Kallio H, Tahvonen R (2003) Effects of varieties and cultivation conditions on the composition of strawberries. J Food Compost Anal 16:67–80. doi: 10.1016/S0889-1575(02)00165-5 CrossRefGoogle Scholar
  23. 23.
    Skupień K, Oszmiański J (2004) Comparison of six cultivars of strawberries (Fragaria x ananassa Duch.) grown in northwest Poland. Eur Food Res Technol 219:66–70. doi: 10.1007/s00217-004-0918-1 CrossRefGoogle Scholar
  24. 24.
    Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavonoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J Agric Food Chem 52:3169–3176. doi: 10.1021/jf0307595 CrossRefGoogle Scholar
  25. 25.
    Ben-Amotz A, Levy Y (1996) Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. Am J Clin Nutr 63:729–734Google Scholar
  26. 26.
    Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705. doi: 10.1021/jf950579y CrossRefGoogle Scholar
  27. 27.
    Iversen CK (1999) Black currant nectar: effect of processing and storage on anthocyanin and ascorbic acid content. J Food Sci 64:37–41. doi: 10.1111/j.1365-2621.1999.tb09856.x CrossRefGoogle Scholar
  28. 28.
    De Ancos B, González EM, Cano MP (2000) Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J Agric Food Chem 48:4565–4570. doi: 10.1021/jf0001684 CrossRefGoogle Scholar
  29. 29.
    Häkkinen SH, Kärenlampi SO, Mykkänen HM, Heinonen IM, Törrönen AR (2000) Ellagic acid content in berries: influence of domestic processing and storage. Eur Food Res Technol 212:75–80. doi: 10.1007/s002170000184 CrossRefGoogle Scholar
  30. 30.
    Ara V (2002) The black chokeberry: a healthy fruit that will soon be “on all tongues”? Fruit Process 12:500–506Google Scholar
  31. 31.
    Buchert J, Koponen JM, Suutarinen M, Mustranta A, Lille M, Törrönen R, Poutanen K (2005) Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J Sci Food Agric 85:2548–2556. doi: 10.1002/jsfa.2284 CrossRefGoogle Scholar
  32. 32.
    Da Silva Pinto M, Lajolo FM, Genovese MI (2007) Bioactive compounds and antioxidant capacity of strawberry jams. Plant Foods Hum Nutr 62:127–131. doi: 10.1007/s11130-007-0052-x CrossRefGoogle Scholar
  33. 33.
    Shahidi F, Naczk M (2004) Phenolic compounds in fruits and vegetables. In: Phenolics in food and nutraceutical, CRC LLC, pp 131–156Google Scholar
  34. 34.
    Puupponen-Pimiä R, Nohynek L, Alakomi H-L, Oksman-Caldentey K-M (2005) Bioactive berry compounds—novel tools against human pathogens. Appl Microbiol Biotechnol 67:8–18. doi: 10.1007/s00253-004-1817-x CrossRefGoogle Scholar
  35. 35.
    Cieślik E, Gręda A, Adamus W (2006) Contents of polyphenols in fruit and vegetables. Food Chem 94:135–142. doi: 10.1016/j.foodchem.2004.11.015 CrossRefGoogle Scholar
  36. 36.
    Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353. doi: 10.1016/S0963-9969(99)00095-2 CrossRefGoogle Scholar
  37. 37.
    Deighton N, Brennan R, Finn C, Davies HV (2000) Antioxidant properties of domesticated and wild Rubus species. J Sci Food Agric 80:1307–1313. doi: 10.1002/1097-0010(200007)80:9<1307:: AID-JSFA638>3.0.CO;2-P CrossRefGoogle Scholar
  38. 38.
    Haffner K, Rosenfeld HJ, Skrede G, Wang L (2002) Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biol Technol 24:279–289. doi: 10.1016/S0925-5214(01)00147-8 CrossRefGoogle Scholar
  39. 39.
    Anttonen MJ, Karjalainen RO (2005) Environmental and genetic variation of phenolic compounds in red raspberry. J Food Compost Anal 18:759–769. doi: 10.1016/j.jfca.2004.11.003 CrossRefGoogle Scholar
  40. 40.
    Ehala S, Vaher M, Kaljurand M (2005) Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J Agric Food Chem 53:6484–6490. doi: 10.1021/jf050397w CrossRefGoogle Scholar
  41. 41.
    Castrejón ADR, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:564–572. doi: 10.1016/j.foodchem.2008.01.007 CrossRefGoogle Scholar
  42. 42.
    Asami DK, Hong Y-J, Barrett DM, Mitchell AE (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional organic, and sustainable agricultural practices. J Agric Food Chem 51:1237–1241. doi: 10.1021/jf020635c CrossRefGoogle Scholar
  43. 43.
    Dietrich H, Rechner A, Patz CD (2004) Bioactive compounds in fruit and juice. Fruit Process 1:50–55Google Scholar
  44. 44.
    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. doi: 10.1021/jf990146l CrossRefGoogle Scholar
  45. 45.
    Siriwoharn T, Wrolstad RE, Durst RW (2006) Identification of ellagic acid in blackberry juice sediment. J Food Sci 70:C189–C197Google Scholar
  46. 46.
    South PK, Miller DD (1998) Iron binding by tannic acid: effects of selected ligands. Food Chem 63:167–172. doi: 10.1016/S0308-8146(98)00040-5 CrossRefGoogle Scholar
  47. 47.
    House WA (1999) Trace element bioavailability as exemplified by iron and zinc. Field Crops Res 60:115–141. doi: 10.1016/S0378-4290(98)00136-1 CrossRefGoogle Scholar
  48. 48.
    Wang RS, Kies C (1991) Niacin, thiamin, iron and protein status of humans as affected by the consumption of tea (Camellia sinensis) infusions. Plant Foods Hum Nutr 41:337–353. doi: 10.1007/BF02310628 CrossRefGoogle Scholar
  49. 49.
    Tamir M, Alumot E (2006) Inhibition of digestive enzymes by condensed tannins from green and ripe carobs. J Sci Food Agric 20:119–202Google Scholar
  50. 50.
    Oh H-I, Hoff JE (2006) pH dependence of complex formation between condensed tannins and proteins. J Food Sci 52:1267–1269. doi: 10.1111/j.1365-2621.1987.tb14059.x CrossRefGoogle Scholar
  51. 51.
    Gawel R, Iland PG, Francis IL (2001) Characterizing the astringency of red wine: a case study. Food Qual Prefer 12:83–94. doi: 10.1016/S0950-3293(00)00033-1 CrossRefGoogle Scholar
  52. 52.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747Google Scholar
  53. 53.
    Borowska EJ, Szajdek A, Borowski J (2005) Antioxidant properties of fruits, vegetables and their products. Fruit Process 1:38–43Google Scholar
  54. 54.
    Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693. doi: 10.1021/jf980145d CrossRefGoogle Scholar
  55. 55.
    Heinonen IM, Meyer AS, Frankel EN (1998) Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem 46:4107–4112. doi: 10.1021/jf980181c CrossRefGoogle Scholar
  56. 56.
    Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 49:969–974. doi: 10.1021/jf001206m CrossRefGoogle Scholar
  57. 57.
    Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. J Agric Food Chem 51:502–509. doi: 10.1021/jf020728u CrossRefGoogle Scholar
  58. 58.
    Wada L, Ou B (2002) Antioxidant activity and phenolic content of Oregon caneberries. J Agric Food Chem 50:3495–3500. doi: 10.1021/jf011405l CrossRefGoogle Scholar
  59. 59.
    Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C (2002) The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36:217–233. doi: 10.1080/10715760290006484 CrossRefGoogle Scholar
  60. 60.
    Zheng Y, Wang SY, Wang CY, Zheng W (2007) Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT 40:49–57. doi: 10.1016/j.lwt.2005.08.013 CrossRefGoogle Scholar
  61. 61.
    Pantelidis GE, Vasilakakis, Manganaris GA, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102:777–783. doi: 10.1016/j.foodchem.2006.06.021 CrossRefGoogle Scholar
  62. 62.
    Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49:2222–2227. doi: 10.1021/jf0013656 CrossRefGoogle Scholar
  63. 63.
    Erkan M, Wang SY, Wang CY (2008) Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Post Biol Technol 48:163–171. doi: 10.1016/j.postharvbio.2007.09.028 CrossRefGoogle Scholar
  64. 64.
    Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933. doi: 10.1016/S0031-9422(03)00438-2 CrossRefGoogle Scholar
  65. 65.
    Da Costa CT, Horton D, Margolis SA (2000) Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. J Chrom A 881:403–410. doi: 10.1016/S0021-9673(00)00328-9 CrossRefGoogle Scholar
  66. 66.
    Dugo P, Mondello L, Errante G, Zappia G, Dugo G (2001) Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J Agric Food Chem 49:3987–3992. doi: 10.1021/jf001495e CrossRefGoogle Scholar
  67. 67.
    Du Q, Jerz G, Winterhalter P (2004) Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography. J Chromatogr A 1045:59–63. doi: 10.1016/j.chroma.2004.06.017 CrossRefGoogle Scholar
  68. 68.
    Goiffon JP, Brun M, Bourrier MJ (1991) High-performance liquid chromatography of red fruit anthocyanins. J Chromatogr A 537:101–121. doi: 10.1016/S0021-9673(01)88890-7 CrossRefGoogle Scholar
  69. 69.
    Frøytlog C, Slimestad R, Andersen QM (1998) Combination of chromatographic techniques for the preparative isolation of anthocyanins—applied on blackcurrant (Ribes nigrum) fruits. J Chromatogr A 825:89–95. doi: 10.1016/S0021-9673(98)00673-6 CrossRefGoogle Scholar
  70. 70.
    Slimestad R, Solheim H (2002) Anthocyanins from black currants (Ribes nigrum L.). J Agric Food Chem 50:3228–3231. doi: 10.1021/jf011581u CrossRefGoogle Scholar
  71. 71.
    Kader F, Rovel B, Girardin M, Metche M (1996) Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum L.). Food Chem 55:35–40. doi: 10.1016/0308-8146(95)00068-2 CrossRefGoogle Scholar
  72. 72.
    Lohachoompol V, Mulholland M, Srzednicki G, Craske J (2008) Determination of anthocyanins in various cultivars of highbush and rabbiteye blueberries. Food Chem 111:249–254. doi: 10.1016/j.foodchem.2008.03.067 CrossRefGoogle Scholar
  73. 73.
    Oszmiański J, Sapis JC (1988) Anthocyanins in fruits of Aronia melanocarpa (chokeberry). J Food Sci 53:1241–1242. doi: 10.1111/j.1365-2621.1988.tb13577.x CrossRefGoogle Scholar
  74. 74.
    Slimestad R, Torskangerpoll K, Nateland HS, Johannessen T, Giske NH (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compost Anal 18:61–68. doi: 10.1016/j.jfca.2003.12.003 CrossRefGoogle Scholar
  75. 75.
    Andersen QM (1989) Anthocyanins in fruits of Vaccinium oxycoccus L. (small cranberry). J Food Sci 54:383–384, 387. doi: 10.1111/j.1365-2621.1989.tb03087.x CrossRefGoogle Scholar
  76. 76.
    De Ancos B, Ibañez E, Reglero G, Cano MP (2000) Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J Agric Food Chem 48:873–879. doi: 10.1021/jf990747c CrossRefGoogle Scholar
  77. 77.
    Gil MI, Holcroft DM, Kader AA (1997) Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J Agric Food Chem 45:1662–1667. doi: 10.1021/jf960675e CrossRefGoogle Scholar
  78. 78.
    Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124. doi: 10.1021/jf040411p CrossRefGoogle Scholar
  79. 79.
    Oszmiański J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221:809–813. doi: 10.1007/s00217-005-0002-5 CrossRefGoogle Scholar
  80. 80.
    Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17. doi: 10.1080/10408690490263756 CrossRefGoogle Scholar
  81. 81.
    Cheynier V, Dueñas-Paton M, Salas E, Maury C, Souquet J-M, Sarni-Manchado P, Fulcrand H (2006) Sructure and properties of wine pigments and tannins. Am J Enol Vitic 57:298–305Google Scholar
  82. 82.
    Foo LY, Porter LJ (1981) The structure of tannins of some edible fruits. J Sci Food Agric 32:711–716. doi: 10.1002/jsfa.2740320712 CrossRefGoogle Scholar
  83. 83.
    Wang Y, Catana F, Yang Y, Roderick R, Van Breemen RB (2002) An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem 50:431–435. doi: 10.1021/jf010812u CrossRefGoogle Scholar
  84. 84.
    Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, Van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870. doi: 10.1021/jf034150f CrossRefGoogle Scholar
  85. 85.
    Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52:4713–4719. doi: 10.1021/jf040095e CrossRefGoogle Scholar
  86. 86.
    Heinonen MI, Ollilainen V, Linkola EK, Varo PT, Koivistoinen PE (1989) Carotenoids in Finnish foods: vegetables, fruits, and berries. J Agric Food Chem 37:655–659. doi: 10.1021/jf00087a017 CrossRefGoogle Scholar
  87. 87.
    Razungles A, Oszmiański J, Sapis J-C (1989) Determination of carotenoids in fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of chokeberry (Aronia melanocarpa). J Food Sci 54:774–775. doi: 10.1111/j.1365-2621.1989.tb04709.x CrossRefGoogle Scholar
  88. 88.
    Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111. doi: 10.1016/0308-8146(95)92669-B CrossRefGoogle Scholar
  89. 89.
    Marinova D, Ribarova F (2007) HPLC determination of carotenoids in Bulgarian berries. J Food Compost Anal 20:370–374. doi: 10.1016/j.jfca.2006.09.007 CrossRefGoogle Scholar
  90. 90.
    Naidu KA (2003) Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2:7. doi: 10.1186/1475-2891-2-7 CrossRefGoogle Scholar
  91. 91.
    Hägg M, Ylikoski S, Kumpulainen J (1995) Vitamin C content in fruits and berries consumed in Finland. J Food Compost Anal 8:12–20. doi: 10.1006/jfca.1995.1003 CrossRefGoogle Scholar
  92. 92.
    Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4977–4982. doi: 10.1021/jf0106244 CrossRefGoogle Scholar
  93. 93.
    Jiao H, Wang SY (2000) Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J Agric Food Chem 48:5672–5676. doi: 10.1021/jf000765q CrossRefGoogle Scholar
  94. 94.
    Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604. doi: 10.1021/jf000220w CrossRefGoogle Scholar
  95. 95.
    Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48:5677–5684. doi: 10.1021/jf000766i CrossRefGoogle Scholar
  96. 96.
    Teissedre PL, Frankel EN, Waterhouse Al, Peleg H, German JB (1996) Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J Sci Food Agric 70:55–61. doi: 10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X CrossRefGoogle Scholar
  97. 97.
    Meyer AS, Yi O-S, Pearson DA, Waterhouse AI, Frankel EN (1997) Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes. J Agric Food Chem 45:1638–1643. doi: 10.1021/jf960721a CrossRefGoogle Scholar
  98. 98.
    Meyer AS, Donovan JL, Pearson DA, Waterhouse AI, Frankel EN (1998) Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. J Agric Food Chem 46:1783–1787. doi: 10.1021/jf9708960 CrossRefGoogle Scholar
  99. 99.
    Wang J, Mazza G (2002) Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. J Agric Food Chem 50:850–857. doi: 10.1021/jf010976a CrossRefGoogle Scholar
  100. 100.
    Vinson JA, Su X, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321. doi: 10.1021/jf0009293 CrossRefGoogle Scholar
  101. 101.
    Liao K, Yin M (2000) Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: importance of the partition coefficient. J Agric Food Chem 48:2266–2273. doi: 10.1021/jf990946w CrossRefGoogle Scholar
  102. 102.
    Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi: 10.1016/S1360-1385(97)01018-2 CrossRefGoogle Scholar
  103. 103.
    Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure–activity relationship. Free Radic Biol Med 22:749–760. doi: 10.1016/S0891-5849(96)00351-6 CrossRefGoogle Scholar
  104. 104.
    Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309. doi: 10.1021/jf960421t CrossRefGoogle Scholar
  105. 105.
    Saint-Cricq De Gaulejac N, Provost C, Vivas N (1999) Comparative study of polyphenol scavenging activities assessed by different methods. J Agric Food Chem 47:425–431. doi: 10.1021/jf980700b CrossRefGoogle Scholar
  106. 106.
    Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633. doi: 10.1021/jf025551i CrossRefGoogle Scholar
  107. 107.
    Satué-Gracia MT, Heinonen M, Frankel EN (1997) Anthocyanins as antioxidants on human low-density lipoprotein and lecithin-liposome systems. J Agric Food Chem 45:3362–3367. doi: 10.1021/jf970234a CrossRefGoogle Scholar
  108. 108.
    Sarma AD, Sreelakshmi Y, Sharma R (1997) Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry 45:671–674. doi: 10.1016/S0031-9422(97)00057-5 CrossRefGoogle Scholar
  109. 109.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892. doi: 10.1021/jf970975b CrossRefGoogle Scholar
  110. 110.
    Porter ML, Krueger CG, Wiebe DA, Cunningham DG, Reed JD (2001) Cranberry proanthocyanidins associate with low-density lipoprotein and inhibit in vitro Cu2+-induced oxidation. J Sci Food Agric 81:1306–1313. doi: 10.1002/jsfa.940 CrossRefGoogle Scholar
  111. 111.
    Retsky KL, Frei B (1995) Vitamin C prevents metal-ion dependent initiation and propagation of lipid peroxidation in human low density lipoprotein. Biochim Biophys Acta 1257:279–287Google Scholar
  112. 112.
    Iqbal K, Khan A, Muzaffar M, Khattak AK (2004) Biological significance of ascorbic acid (vitamin C) in human health—a review. Pak J Nutr 3:5–13CrossRefGoogle Scholar
  113. 113.
    Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants—a review. J Photochem Photobiol B Biol 41:189–200. doi: 10.1016/S1011-1344(97)00092-4 CrossRefGoogle Scholar
  114. 114.
    Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110. doi: 10.1016/j.biopha.2003.12.006 CrossRefGoogle Scholar
  115. 115.
    González EM, De Ancos B, Cano MP (2003) Relation between bioactive compounds and free radical-scavenging capacity in berry fruits during frozen storage. J Sci Food Agric 83:722–726. doi: 10.1002/jsfa.1359 CrossRefGoogle Scholar
  116. 116.
    Cho MJ, Howard LR, Prior RL, Clark JR (2005) Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 85:2149–2158. doi: 10.1002/jsfa.2209 CrossRefGoogle Scholar
  117. 117.
    Martín-Aragón S, Basabe B, Benedí JM, Villar AM (1998) Antioxidant action of Vaccinium myrtillus L. Phytother Res 12:S104–S106. doi: 10.1002/(SICI)1099-1573(1998)12:1+<S104::AID-PTR265>3.0.CO;2-O CrossRefGoogle Scholar
  118. 118.
    Canter PH, Ernst E (2004) Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision—a systematic review of placebo-controlled trials. Surv Ophthalmol 49:38–49. doi: 10.1016/j.survophthal.2003.10.006 CrossRefGoogle Scholar
  119. 119.
    Wilson T, Porcari JP, Harbin D (1998) Cranberry extract inhibits low density lipoprotein oxidation. Life Sci 62:PL 381–PL 386CrossRefGoogle Scholar
  120. 120.
    Terris MK, Issa MM, Tacker JR (2001) Dietary supplementation with cranberry concentrate tablets may increase the risk of nephrolithiasis. Urology 57:26–29. doi: 10.1016/S0090-4295(00)00884-0 CrossRefGoogle Scholar
  121. 121.
    Liu Y, Black MA, Caron L, Camesano TA (2006) Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnol Bioeng 93:297–305. doi: 10.1002/bit.20675 CrossRefGoogle Scholar
  122. 122.
    Howell AB (2002) Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit Rev Food Sci Nutr 42:273–278. doi: 10.1080/10408390209351915 CrossRefGoogle Scholar
  123. 123.
    Yamanaka A, Kimizuka R, Kato T, Okuda K (2004) Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol 19:150–154. doi: 10.1111/j.0902-0055.2004.00130.x CrossRefGoogle Scholar
  124. 124.
    Labrecque J, Bodet C, Chandad F, Grenier D (2006) Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis. J Antimicrob Chemother 58:439–443. doi: 10.1093/jac/dkl220 CrossRefGoogle Scholar
  125. 125.
    Burger O, Ofek I, Tabak M (2000) A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunol Med Microbiol 29:295–301. doi: 10.1111/j.1574-695X.2000.tb01537.x CrossRefGoogle Scholar
  126. 126.
    Patterson RE, White E, Kristal AR, Neuhouser ML, Potter JD (1997) Vitamin supplements and cancer risk: the epidemiologic evidence. Cancer Causes Control 8:786–802. doi: 10.1023/A:1018443724293 CrossRefGoogle Scholar
  127. 127.
    Coulter ID, Hardy ML, Morton SC, Hilton LG, Tu W, Valentine D, Shekelle PG (2006) Antioxidants vitamin C and vitamin E for the prevention and treatment of cancer. J Gen Intern Med 21:735–744. doi: 10.1111/j.1525-1497.2006.00483.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Human NutritionUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Food Plant Chemistry and ProcessingUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations