Advertisement

Plant Foods for Human Nutrition

, Volume 62, Issue 2, pp 59–63 | Cite as

The Influence of Maca (Lepidium meyenii) on Antioxidant Status, Lipid and Glucose Metabolism in Rat

  • ROSTISLAV VEČEŘA
  • JAN OROLIN
  • NINA ŠKOTTOVÁ
  • LUDMILA KAZDOVÁ
  • OLENA OLIYARNIK
  • JITKA ULRICHOVÁ
  • VILÍM ŠIMÁNEK
General Paper

Abstract

This work focused on the effect of maca on lipid, anti-oxidative, and glucose parameters in hereditary hypertriglyceridemic (HHTg) rat. Maca (1%) was administred to rats as a part of a high-sucrose diet (HSD) for 2 weeks. Rosiglitazone (0.02%) was used as a positive control. Maca significantly decreased the levels of VLDL (very low density lipoproteins), LDL (low density lipoproteins), and total cholesterol, and also the level of TAG (triacylglycerols) in the plasma, VLDL, and liver. Maca, as well as rosiglitazone, significantly improved glucose tolerance, as the decrease of AUC (area under the curve) of glucose showed, and lowered levels of glucose in blood. The activity of SOD (superoxide dismutase) in the liver, the GPX (glutathione peroxidase) in the blood, and the level of GSH (glutathione) in liver increased in all cases significantly. Results demonstrate that maca seems to be promising for a positive influence on chronic human diseases (characterized by atherogenous lipoprotein profile, aggravated antioxidative status, and impaired glucose tolerance), and their prevention.

Key words:

Cholesterol Dietary supplement Lipoproteins Maca Triacylglycerols 

Notes

Acknowledgement

This work was supported by the Ministry of Education (project MSM 6198959216), Czech Republic.

References

  1. 1.
    Van Der Schouw YT, Kreijkamp-Kaspers S, Peeters PH, Keinan-Boker L, Rimm EB, Grobbee DE (2005) Prospective study on usual dietary phytoestrogen intake and cardiovascular disease risk in Western women. Circulation 111: 465–471.CrossRefGoogle Scholar
  2. 2.
    Toledo J, Dehal P, Jarrin F, Hu J, Hermann M, Al-Shehbaz I, Quiros CF (1998) Genetic variability of Lepidium meyenii and other Andean Lepidium species (Brassicaceae) assessed by molecular markers. Ann Bot 82: 523–530.CrossRefGoogle Scholar
  3. 3.
    Quirós CF, Aliaga RC (1997) Andean Roots and Tubers. In: Ahipa, Arracacha, Maca and Yacon. Hermann M, Heller J, (eds), IPGRI, Rome, pp 174–180.Google Scholar
  4. 4.
    Aliaga EC, Aliaga RC (1998) Guia para el cultivo, aprovechamiento y conservacion de la maca. In: Lepidium meyenii Walpers. Bello CA (ed), Santafé de Bogotá, pp 91–99.Google Scholar
  5. 5.
    Chacón de Popovici G (1997) In: La importancia de Lepidium peruvianum (“Maca”) en la alimentacion y salud del ser humano y animal 2,000 anos antes y desputes del Cristo y en el signo XXI. Romero SG (ed), Lima, pp 121–140.Google Scholar
  6. 6.
    Canales M, Aguilar J, Prada A, Marcelo A, Huaman C, Carbajal L (2000) Nutritional evaluation of Lepidium meyenii (Maca) in albino mice and their descendants. Arch Latinoam Nutr 50: 126–133.Google Scholar
  7. 7.
    Gonzales GF, Cordova A, Vega K, Chung A, Villena A, Gonez C (2002) Effect of Lepidium meyenii (Maca) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia 34: 367–372.CrossRefGoogle Scholar
  8. 8.
    López-Fando A, Gómez-Serranillos MP, Iglesias I, Lock O, Upamayta UP, Carretero ME (2004) Lepidium peruvianum chacon restores homeostasis impaired by restraint stress. Phytoter Res 18: 471–474.CrossRefGoogle Scholar
  9. 9.
    Sandoval M, Okuhama NN, Angeles FM, Melchor VV, Condenzo LA, Lao J, Miller MJS (2002) Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem 79: 207–213.CrossRefGoogle Scholar
  10. 10.
    Vrána A, Kazdová L, Dobesová Z (1993) Triglyceridemia glycoregulation, and blood presure in various rat strains: effects of dietary carbohydrates. Ann NY Acad Sci 683: 57–68.CrossRefGoogle Scholar
  11. 11.
    Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1353.Google Scholar
  12. 12.
    Haug A, Hostmark AT (1987) Lipoprotein lipase, lipoproteins and tissue lipids in rats fed fish oil and coconut oil. J Nutr 117: 1011–1017.Google Scholar
  13. 13.
    Concetti A, Massei P, Rotilio G (1976) Superoxide dismutase in red blood cells: method of assay and enzyme content in normal subjects and in patients with beta-thalassemia (major and intermedia). J Lab Clin Med 87: 1057–1064.Google Scholar
  14. 14.
    Aeby H (1984) Catalase in vitro. Methods Enzymol 105: 121–126.CrossRefGoogle Scholar
  15. 15.
    Mojin VI (1986) Easy and specific method erythrocytes glutathione peroxidase activity measurement. Lab Del 2: 724.Google Scholar
  16. 16.
    Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and non protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25: 192–205.CrossRefGoogle Scholar
  17. 17.
    Ward PJ, Till GO, Hatherill JR (1985) Systemic complement activation, lung injury, and product of lipid peroxidation. J Clin Invest 76: 517–527.Google Scholar
  18. 18.
    Naito C, Kawamura M, Yamamoto Y (1993) Lipid peroxides as initiating factor of atherosclerosis. Ann NY Acad Sci 15: 27–29.CrossRefGoogle Scholar
  19. 19.
    Reaven GM (2000) Diet and Syndrome X. Curr Atheroscler 2: 503–507.CrossRefGoogle Scholar
  20. 20.
    Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H (2004) Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53: 2169–2176.CrossRefGoogle Scholar
  21. 21.
    Škottová N, Kazdová L, Oliyarnuk O, Večeřa R, Sobolová L, Ulrichová J (2004) Phenolics-rich extract from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacol Res 50: 123–130.CrossRefGoogle Scholar
  22. 22.
    Bagi Z, Koller A, Kaley G (2004) PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol 286: 742–748.CrossRefGoogle Scholar
  23. 23.
    Tao L, Liu HR, Gao E, Teng ZP, Lopez BL, Christopher TA, Ma XL, Batinic-Haberle I, Willette RN, Ohlstein EH, Yue TL (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia. Circulation 108: 2805–2811.CrossRefGoogle Scholar
  24. 24.
    Parulkar AA, Pendergrass ML, Granda-Ayala R, Lee TR, Fonseca VA (2001) Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 134: 61–71.Google Scholar
  25. 25.
    Despres JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B (2000) HDL-cholesterol as a marker of coronary heart disease risk: the Quebec cardiovascular study. Atherosclerosis 153: 263–272.CrossRefGoogle Scholar
  26. 26.
    Valentová K, Buckiová D, Křen V, Pěknicová J, Ulrichová J, Šimánek V (2006) The in vitro biological activity of Lepidium meyenii extract. Cell Biol Toxicol 22: 91–99.CrossRefGoogle Scholar
  27. 27.
    Zheng BL, He K, Khim CH, Rogers L, Shao Y, Huang ZY, Lu Y, Yan SJ, Qien LC, Zheng QY (2000) Effect of a lipidic extract from lepidium meyenii on sexual behavior in mice and rats. Urology 55: 598–602.CrossRefGoogle Scholar
  28. 28.
    Zhao J, Muhammad I, Dunbar DC, Mustafa J, Khan IA (2005) New Alkamides from Maca (Lepidium meyenii). J Agric Food Chem 53: 690–693.CrossRefGoogle Scholar
  29. 29.
    Muhammad I, Zhao J, Dunbar DC, Khan IA (2002) Constituens of Lepidium meyenii “maca.” Phytochemistry 59: 105–110.CrossRefGoogle Scholar
  30. 30.
    Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66: 1101–1103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • ROSTISLAV VEČEŘA
    • 1
  • JAN OROLIN
    • 1
  • NINA ŠKOTTOVÁ
    • 1
  • LUDMILA KAZDOVÁ
    • 3
  • OLENA OLIYARNIK
    • 3
  • JITKA ULRICHOVÁ
    • 2
  • VILÍM ŠIMÁNEK
    • 2
  1. 1.Institute of PharmacologyMedical Faculty, Palacký UniversityOlomoucCzech Republic
  2. 2.Institute of Medical ChemistryMedical Faculty, Palacký UniversityOlomoucCzech Republic
  3. 3.Institute for Clinical and Experimental MedicinePraha 4Czech Republic

Personalised recommendations