Antioxidant Activity of Phenolics Compounds From Sugar Cane (Saccharum officinarum L.) Juice

  • Joaquim Maurício Duarte-Almeida
  • Alexis Vidal Novoa
  • Adyary Fallarero Linares
  • Franco M. Lajolo
  • Maria Inés GenoveseEmail author


Phenolic compounds in sugar cane (Saccharum officinarum L.) juice were identified and quantified by analytical high performance liquid chromatography and photodiode array detection, showing the predominance of flavones (apigenin, luteolin and tricin derivatives), among flavonoids, and of hydroxycinnamic, caffeic and sinapic acids, among phenolic acids, representing a total content of around 160 mg/L. A tricin derivative was present in the highest proportion (>10% of the total). The phenolic extract obtained from sugar cane juice showed a protective effect against in vivo MeHgCl intoxication and potent inhibition of ex vivo lipoperoxidation of rat brain homogenates, indicating a potential use for beneficial health effects and/or therapeutic applications.

Key words:

Sugar cane Polyphenolics profile Antioxidant activity 



The authors acknowledge CNPq (Conselho Nacional para o Desenvolvimento Científico e Tecnológico) and CYTED (Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo—CYTED XI. 19. Aplicación de los nuevos ingredientes funcionales em alimentación infantil y para adultos), for financial support.


  1. 1.
    FNP Consultoria & Comércio (2005) Agrianual 2005: Cana-de-açúcar, São Paulo.Google Scholar
  2. 2.
    Noa M, Mendoza S, Mas R, Mendoza N (2002) Effect of D-003, a mixture of high molecular weight primary acids from sugar cane wax, on CL4C-induced liver acute injury in rats. Drugs Exp Clin Res 28(5): 177–183.Google Scholar
  3. 3.
    Molina V, Noa M, Arruzazabala L, Carbajal D, Mas R (2005) Effect of D-003, a mixture of very-long-chain aliphatic acids purified from sugarcane wax, on cerebral ischemia in Mongolian gerbils. J Med Food 8(4): 482–487.CrossRefGoogle Scholar
  4. 4.
    Paton NH, Duong M (1992) Sugar-cane phenolics and 1st expressed juice color .3. role of chlorogenic acid and flavonoids in enzymatic browning of cane juice. Intern Sugar J 94(1124): 170–176.Google Scholar
  5. 5.
    McGhie TK (1993) Analysis of sugarcane flavonoids by capillary zone electrophoresis. J Chromatrogr 634: 107–112.CrossRefGoogle Scholar
  6. 6.
    Rice-Evans C, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20: 933–956.CrossRefGoogle Scholar
  7. 7.
    Nakasone Y, Takara K, Wada K, Tanaka J, Yogi S (1996) Antioxidative compounds isolated from Kokuto, non-centrifuged cane sugar. Biosci Biotech Biochem 60: 1714–1716.CrossRefGoogle Scholar
  8. 8.
    Takara K, Matsui D, Wada K, Ichiba T, Nakasone Y (2002) New antioxidative phenolic glycosides from kokuto non-centrifuged cane sugar. Biosci Biotechnol Biochem 66(1): 29–35.CrossRefGoogle Scholar
  9. 9.
    Payet B, Cheong AS, Smadja J (2005) Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. J Agric Food Chem 53: 10074–10079.CrossRefGoogle Scholar
  10. 10.
    Andrade P, Ferreres F, Amaral MT (1997) Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J Liq Chromatogr Relat Technol 20: 2281–2288.Google Scholar
  11. 11.
    Tsao R, Yang R, Xie S, Sockovie E, Khanizadeh S (2005) Which polyphenolic compounds contribute to the total antioxidant activities of apple?. J Agric Food Chem 53(12): 4989–4995.CrossRefGoogle Scholar
  12. 12.
    Arabbi PR, Genovese MI, Lajolo FM (2004) Flavonoids in vegetable foods commonly consumed in Brazil. J Agric Food Chem 52(5): 1124–1131.Google Scholar
  13. 13.
    CENPALAB (1992) Código Práctico para el Uso de los Animales de Laboratorio, Centro para la Producción de Animales de Laboratorio, La Habana, Cuba.Google Scholar
  14. 14.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 331–358.CrossRefGoogle Scholar
  15. 15.
    Duarte-Almeida JM, Santos RJ, Genovese MI, Lajolo FM (2006). Evaluation of the antioxidant activity using the b-carotene/linoleic acid system and the DPPH scavenging method. Ciência e Tecnologia de Alimentos 26: 446–452.CrossRefGoogle Scholar
  16. 16.
    Marco GI (1968) Rapid method for evaluation of antioxidants. J Am Oil Chem Soc 45: 594–598.Google Scholar
  17. 17.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28: 25–30.Google Scholar
  18. 18.
    Genovese MI, Lajolo FM (2002) Isoflavones in soy based foods consumed in Brazil: levels, distribution and estimated intake. J Agric Food Chem 50(21): 5987–5993.CrossRefGoogle Scholar
  19. 19.
    Hollman PC, Katan MB (1999) Health effects and bioavailability of dietary flavonols. Free Rad Res Suppl:S75–80.Google Scholar
  20. 20.
    Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8(3): 281–290.CrossRefGoogle Scholar
  21. 21.
    Nielsen SE, Young JF, Daneshvar D, Lauridsen ST, Knuthsen P, Sandström B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81: 447–455.Google Scholar
  22. 22.
    Jeyabal PV, Syed M.B, Venkataraman M, Sambandham JK, Sakthisekaran D (2005) Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog 44(1): 11–20.CrossRefGoogle Scholar
  23. 23.
    Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48(8): 3597–3604.CrossRefGoogle Scholar
  24. 24.
    Lee SK, Mbwambo ZH, Chung H, Luyengi L, Gamez EJ, Mehta RG, Kinghorn AD, Pezzuto JM. (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1(1): 35–46.Google Scholar
  25. 25.
    Cholbi MR, Paya M, Alcaraz MJ (1991) Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47(2): 195–199.CrossRefGoogle Scholar
  26. 26.
    Magos L (1982) Neurotoxicity, anorexia and the preferential choice of antidote in methylmercury intoxicated rats. Neurobehav Toxicol Teratol 4(6): 643–646.Google Scholar
  27. 27.
    Naganuma A, Miura N, Kaneko S, Mishina T, Hosoya S, Miyairi S, Furuchi, TS, Kuge S (2000) GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. FASEB J 14: 968–972.Google Scholar
  28. 28.
    Shanker G, Aschner M (2003) Methylmercury- induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Brain Res Mol Brain Res 110(1): 85–91.CrossRefGoogle Scholar
  29. 29.
    Yee S, Choi BH (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17: 17–26.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Joaquim Maurício Duarte-Almeida
    • 1
  • Alexis Vidal Novoa
    • 2
  • Adyary Fallarero Linares
    • 2
  • Franco M. Lajolo
    • 1
  • Maria Inés Genovese
    • 1
    Email author
  1. 1.Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de BioquímicaUniversidad de La HabanaLa HabanaCuba

Personalised recommendations