Advertisement

Plant Foods for Human Nutrition

, Volume 60, Issue 3, pp 99–107 | Cite as

Composition and Functional Properties of Lupinus campestris Protein Isolates

  • S. L. Rodríguez-Ambriz
  • A. L. Martínez-Ayala
  • F. Millán
  • G. Dávila-OrtízEmail author
Article

Abstract

Protein isolates from L. campestris and soybean seeds were prepared using isoelectric precipitation (PI) and micellization (MI) procedures. The amount of protein recovered was considerably higher with the isoelectric precipitation than with the micellization procedure (60% and 30%, respectively). Protein contents were higher than 90% in protein isolates. Antinutritional factors content (alkaloids, lectins, and tannins) were reduced to innocuous levels after protein isolate preparation. Minimum protein solubility for the precipitated lupin protein isolate (LPI) was at pH 4.0, and between pH 4 and 6 for the micellized lupin protein isolate (LMI), increasing at both extremes of the pH scale. Water absorption for the LMI was 1.3 ml/g of protein and its oil absorption 2.2 ml/g of protein. The LPI had 1.7 ml/g of protein in both water and oil absorption. Foaming capacity and stability was pH-dependent. Foaming capacity was higher at pH 2 and lower near the protein isoelectric points. Minimum protein concentration for gelation in LMI was 8% w/v at pH 4, while for LPI was 6% at pH 4 and 6. Amino acid composition in L. campestris flour and protein isolates was high in lysine and low in methionine. Most of the essential amino acids in lupin protein isolates were at acceptable levels compared to a reference pattern for infants and adults. The electrophoretic pattern of both protein isolates showed three bands with different mobilities, suggesting that the protein fractions belong to α-conglutin (11S-like protein), β-conglutin (7S-like protein) and γ-conglutin. It is proven that some of the functional properties of L. campestris protein isolates are similar to those soybean protein isolates recovered under equal conditions.

Key words

Functional properties L. campestris Protein isolates Soybean Vegetable proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damodaran S (1997). Food proteins and their applications. Institut National de la Recherche Agronomique Centre de Recherches de Tours Nouzilly, France. Marcel Dekker, Inc. New York, pp. 1–25.Google Scholar
  2. 2.
    Paredes-López O, Guzmán-Maldonado, SH, Ordorica-Falomir C (1994). Food proteins from emerging seed sources. In: Hudson FJ (ed), New and Developing Sources of Food Proteins; Chapman and Hall. London, U.K., pp. 241–279.Google Scholar
  3. 3.
    Gueguen J, Cerletti P (1994). Proteins of some legume seeds: soybean, pea, faba bean and lupin. In: Hudson FJ (ed), New and Developing Sources of Food Proteins; Chapman and Hall. London, U.K., pp. 145–196.Google Scholar
  4. 4.
    Bermúdez-Torres K (1998). Vorkommen und verbreitung der Lupinen in Mexiko. In: Wink M (ed), Lupinen in forschung and praxis. Universitat Heidelberg, pp. 24–40.Google Scholar
  5. 5.
    Jiménez-Martínez C, Hernández-Sánchez H, Alvárez-Manilla G, Robledo-Quintos N, Martínez-Herrera J, Dávila-Ortíz G (2001). Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccharide, alkaloid and tannin contents of Lupinus campestris seeds. J Sci Food Agric 81: 1–8.CrossRefGoogle Scholar
  6. 6.
    Wink M (1998). Alkaloids: Biochemistry, Ecology and Medicinal Applications. Plenum Press, New York.Google Scholar
  7. 7.
    Ballester D, Yañez E, Garcia R, Erazo S, López F, Hardt E, Cornejo S, López A, Pokniak J, Chichester C (1980). Chemical composition, nutritive value and toxicological evaluation of two species of sweet lupine (L. albus and L. luteus). J Agric Food Chem. 28: 402–405.CrossRefPubMedGoogle Scholar
  8. 8.
    Fernández-Quintela A, Macarulla MT, Barrio AS, Martínez JA (1997). Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum Nutr 51: 331–342.CrossRefPubMedGoogle Scholar
  9. 9.
    Betschart AA (1979). Development of safflower protein. J Am Oil Chem Soc 59: 454–4457.Google Scholar
  10. 10.
    Arntfield SD, Ismond MAH, Murray ED (1985). The fate of antinutritional factors during the preparation of a faba bean protein isolate using a micellization technique. Can Inst Food Sci Technol J. 18: 137–143.Google Scholar
  11. 11.
    AOAC (1995). Official Methods of Analysis. Association of Official Analytical Chemist. Washington, D.C.Google Scholar
  12. 12.
    Alaiz M, Navarro JL, Giron J, Vioque E (1992). Amino acid analysis by high-performance liquid chromatography after derivatization with diethylethoxymethylenemalonate. J Chromatogr 591: 181–186.CrossRefPubMedGoogle Scholar
  13. 13.
    Baer VD, Hartmut RE, Foldheim W (1979). Methodozen zur bestimmung der chinilizidin-alkaloide in Lupinus mutabilis. Z. Lebensm Unters. Forsch 169: 27–31.CrossRefGoogle Scholar
  14. 14.
    Luccisano M, Pompei C, Rossi M (1984). Oil and alkaloid removal from Lupinus mutabilis by extraction with hexane. Lebesnwiss Technol 17: 324–329.Google Scholar
  15. 15.
    Singleton VL, Roos JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitric 16: 144–149.Google Scholar
  16. 16.
    Jaffé WC, Levy A, González DI (1974). Isolation and partial characterization of bean phytohemagglutinins. Phytochem 13: 2685–22693.CrossRefGoogle Scholar
  17. 17.
    Kabirullah M, Wills RBH (1982). Functional properties of acetylated and succinylated sunflower protein isolate. J Food Technol 17: 235–249.Google Scholar
  18. 18.
    Coffman CW, García VV (1977). Functional properties and amino acid content of a protein isolate from mung bean flour. J Food Technol (U. K.) 12: 473–477.Google Scholar
  19. 19.
    Laemmli UK (1976). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 217: 680–685.Google Scholar
  20. 20.
    Montgomery DC Diseño y analísis de experimentos. Grupo Editorial Iberoamericana. México DF (1991). 277–421.Google Scholar
  21. 21.
    Paredes-López O, Ordorica-Falomir C (1986). Production of safflower protein isolates: Composition, yield and protein quality. J Sci Food Agric 37: 1104–1109.Google Scholar
  22. 22.
    Paredes-López O, Ondorica-Falomir C, Olivares-Vázquez MR (1991). Chickpea protein isolates: Physicochemical, functional and nutricional characterization. J Food Sci 56: 726–729.Google Scholar
  23. 23.
    Bernardino NA, Ortiz MA, Martínez AA, Dávila OG (2001). Guava seed protein isolate: functional and nutritional characterization. J Food Biochem 25: 77–90.Google Scholar
  24. 24.
    Sathe SK, Despahpande SS, Salunkhe DK (1982). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J Food Sci 47: 491–497.Google Scholar
  25. 25.
    FAO/WHO.(1985). Energy, protein requirements. Report of a joint. FAO/WHO Meeting. Genova Tech Rep Ser. 724.Google Scholar
  26. 26.
    Hatzold T, Ibrahim E, Gross R, Wink M, Hartmann H, Witte L (1983). Quinolizidine alkaloids in seed of Lupin mutabilis. J Agric Food Chem 31: 934–938.CrossRefGoogle Scholar
  27. 27.
    Wink M (1994). Biological activities and potential application of lupin alkaloids. Adv Lupin Res 161–178.Google Scholar
  28. 28.
    Martínez-Herrera J, Robledo-Quintos N, Mora-Escobedo R, Dávila-Ortíz G (2001). Alkaloid composition of Lupinus campestris from México. J Food Biochem 25: 117–125.Google Scholar
  29. 29.
    Múzquiz M (2000). Factores antinutricionales en fuentes proteicas. En: Jornada internacional sobre proteínas Alimentarias. Vioque J, Clemente A, Bautista J y Millán F; Ed.; Universidad de Sevilla, España. 131–139.Google Scholar
  30. 30.
    Price ML, Hagerman AE, Butler LG (1980). Tannin content of cow pea, chick peas, pigeon peas and mung beans. J Agric Food Chem 28: 459–461.CrossRefPubMedGoogle Scholar
  31. 31.
    Martínez-Ayala AL, Paredes-López O (2001). Molecular characterization of the β-conglutin of lupin seed. J Food Biochem 25: 15–31.Google Scholar
  32. 32.
    Ondorica-Falomir C, Paredes-López O, Peña RJ (1989). Production of safflower potein isolates: Gel filtration and electrophoretic patterns. Lebensm. Wiss U Technol 22: 342–347.Google Scholar
  33. 33.
    Xu L, Diosady L (1994). Functional properties of chinese protein isolates. J Food Sci 59: 1127–1130.Google Scholar
  34. 34.
    Hettiarachy NS, Griffin VK, Gnanasambandam R (1996). Preparation and functional properties of a protein isolate from deffated wheat germ. Cereal Chem 73: 363–367.Google Scholar
  35. 35.
    Kinsella JE (1979). Functional properties of soy proteins. J Amer Oil Chem Soc 56: 242–258.Google Scholar
  36. 36.
    Blagrove RJ, Gillespie JM (1975). Isolation purification and characterization of the seed globulins of Lupinus angustifolius. Aust J Plant Physiol 2: 13–27.Google Scholar
  37. 37.
    Murray ED, Myers CD, Barker LD (1981). Functional attributes of protein—A noncovalent approach to processing and utilizing plant proteins. In: Stanley DW, Murray ED, Lees DW (eds), Utilization of Protein Resources, Food and Nutrition Press, Inc., Westport, CT.Google Scholar
  38. 38.
    Paredes-López O, Ordorica-Falomir C, Cárabez-Trejo A (1988). Production of safflower protein isolates: Physicochemical characterization. Lebensm. Wiss U Technol 21: 328–333.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. L. Rodríguez-Ambriz
    • 1
  • A. L. Martínez-Ayala
    • 1
  • F. Millán
    • 3
  • G. Dávila-Ortíz
    • 2
    Email author
  1. 1.Centro de Desarrollo de Productos Bióticos-IPNCarretera Yautepec-JojutlaMéxicoMéxico
  2. 2.Departamento de Graduados e Investigación en AlimentosEscuela Nacional de Ciencias Biológicas-IPMéxicoMéxico
  3. 3.Departamento de Fisiología y Tecnología de Productos VegetalesInstituto de la Grasa (C.S.I.C.)Sevilla

Personalised recommendations