Quantitative Marketing and Economics

, Volume 10, Issue 2, pp 259–281 | Cite as

A censored random coefficients model for the detection of zero willingness to pay

  • Johannes ReichlEmail author
  • Sylvia Frühwirth-Schnatter


In this paper we address the problem of negative estimates of willingness to pay. We find that there exist a number of goods and services, especially in the fields of marketing and environmental valuation, for which only zero or positive WTP is meaningful. For the valuation of these goods an econometric model for the analysis of repeated dichotomous choice data is proposed. Our model restricts the domain of the estimates of WTP to strictly positive values, while also allowing for the detection of zero WTP. The model is tested on a simulated and a real data set.


Willingness to pay Censored random coefficients Bayesian inference 

JEL Classification

C11 Q51 



The authors would like to thank the editor and two anonymous referees for their insightful and extremely helpful comments on previous versions of this article. Furthermore, we would like to thank Koichi Kuriyama for providing the Tokyo Bay data and approving its use for this article.


  1. Adamowicz, W., Swait, J., Boxall, P., Louviere, J., & Williams, M. (1997). Perceptions versus objective measures of environmental quality in combined revealed and stated preference models of environmental valuation. Journal of Environmental Economics and Management, 32(1), 65–84.CrossRefGoogle Scholar
  2. Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.Google Scholar
  3. Allenby, G. M., Arora, N., & Ginter, J. L. (1998). On the heterogeneity of demand. Journal of Marketing Research, 35, 384–389.CrossRefGoogle Scholar
  4. Arrow, K., Solow, R., Portney, P. R., Leamer, E. E., Radner, R., & Schuman, H. (1993). Report of the NOAA panel on contingent valuation. Technical report, National Oceanic and Athmospheric Administration.Google Scholar
  5. Baltas, G., & Doyle, P. (2001). Random utility models in marketing research: A survey. Journal of Business Research, 51(2), 115–125.CrossRefGoogle Scholar
  6. Bateman, I. J., Carson, R. T., Day, B., Hanemann, M., Hanley, N., Hett, T., Jones-Leeand, M., Loomes, G., Mourato, S., Özdemiroglu, E., Obe, D. W. P., Sugden, R., & Swanson, J. (2002). Economic valuation with stated preference techniques: A manual. Cheltenhan, UK: Edward Elgar Publishing Ltd.Google Scholar
  7. Beenstock, M., Goldin, E., & Haitovsky, Y. (1998). Response bias in a conjoint analysis of power outages. Energy Economics, 20(2), 135–156.CrossRefGoogle Scholar
  8. Bohara, A. K., Kerkvliet, J., & Berrens, R. P. (2001). Addressing negative willingness to pay in dichotomous choice contingent valuation: A Monte Carlo simulation approach. Environmental and Resource Economics, 20(3), 173–195.CrossRefGoogle Scholar
  9. Carlsson, F., & Martinsson, P. (2008). Does it matter when a power outage occurs? – A choice experiment study on the willingness to pay to avoid power outages. Energy Economics, 30(3), 1232–1245.CrossRefGoogle Scholar
  10. Carson, R. T., Mitchell, R. C., Hanemann, W. M., Kopp, R. J., Presser, S., Rudd, P. A. (1992). A contingent valuation study of lost passive use values resulting from the Exxon Valdez oil spill. Report to the attorney general of the State of Alaska, Natural Damage Assessment Inc., San Diego.Google Scholar
  11. Chandukala, S. R., Edwards, Y. D., & Allenby, G. M. (2011). Identifying unmet demand. Marketing Science, 30, 61–73.CrossRefGoogle Scholar
  12. Chib, S. (1992). Bayes inference in the tobit censored regression model. Journal of Econometrics, 51(1), 79–99.CrossRefGoogle Scholar
  13. Clinch, J. P., & Murphy, A. (2001). Modelling winners and losers in contingent valuation of public goods. The Economic Journal, 111(470), 420–443.CrossRefGoogle Scholar
  14. Congdon, P. (2003). Applied Bayesian Modelling. Wiley Series in Probability and Statistics. Chichester, UK: John Wiley & Sons.Google Scholar
  15. Cornick, J., Cox, T. L., & Gould, B. W. (1994). Fluid milk purchases: A multivariate tobit analysis. American Journal of Agricultural Economics, 76(1), 74–82.CrossRefGoogle Scholar
  16. Fong, D. K. H., & DeSarbo, W. S. (2007). A Bayesian methodology for simultaneously detecting and estimating regime change points and variable selection in multiple regression models for marketing research. Quantitative Marketing and Economics, 5, 427–453.CrossRefGoogle Scholar
  17. Frühwirth-Schnatter, S., Tüchler, R., & Otter, T. (2004). Bayesian analysis of the heterogeneity model. Journal of Business & Economic Statistics, 22, 2–15.CrossRefGoogle Scholar
  18. Frühwirth-Schnatter, S., & Wagner, H. (2011). Bayesian variable selection for random intercept modeling of Gaussian and non-Gaussian data. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith & M. West (Eds.), Bayesian Statistics 9 (pp. 165–200). Oxford (UK): Oxford University Press.CrossRefGoogle Scholar
  19. Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC.Google Scholar
  20. George, E. I., & McCulloch, R. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7, 339–373.Google Scholar
  21. Geweke, J. (2005). Contemporary Bayesian Econometrics and Statistics. New York: Wiley.CrossRefGoogle Scholar
  22. Greene, W. H., Hensher, D. A., & Rose, J. M. (2004). Using classical simulation-based estimators to estimate individual WTP values. In A. Alberini & R. Scarpa (Eds.), Applications of Simulation Methods in Environmental and Resource Economics (pp. 17–33). New York: Springer.Google Scholar
  23. Habb, T. C., & McConnell, K. E. (1997). Referendum models and negative willingness to pay: Alternative solutions. Journal of Environmental Economics and Management, 32(2), 251–270.CrossRefGoogle Scholar
  24. Hackl, F., & Pruckner, G. J. (1999). On the gap between open-ended and closed-ended CVM-answers. Applied Economics, 31(6), 733–742.CrossRefGoogle Scholar
  25. Hanemann, W. M., & Kanninen, B. (1999). The statistical analysis of discrete-response CV data. In I. Bateman & K. Willis (Eds.), Valuing Environmental Preferences (pp. 302–441). New York: Oxford University Press.Google Scholar
  26. Hanley, N., Colombo, S., Kriström, B., & Watson, F. (2008). Accounting for negative, zero and positive willingness to pay for landscape change in a national park. Journal of Agricultural Economics, 60(1), 1–16.CrossRefGoogle Scholar
  27. Imai, K., & van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics, 124(2), 311–334.CrossRefGoogle Scholar
  28. Kristroem, B. (1997). Spike models in contingent valuation. American Journal of Agricultural Economics, 79(3), 1013–1023.CrossRefGoogle Scholar
  29. Kuriyama, K., Takeuchi, K., & Washida, T. (1999). Repeated dichotomous choice contigent valuation for multi-attributed environmental resources: A comparisaon between contingent valuation and a choice experiment format. Environmental economics working paper #9902, School of Political Science and Economics, Waseda University.Google Scholar
  30. Layton, D. F., & Brown, G. (2000). Heterogenous preferences regarding global climate change. The Review of Economics and Statistics, 82(4), 616–624.CrossRefGoogle Scholar
  31. Layton, D. F., & Levine, R. (2003). How much does the far future matter? A hierarchical Bayesian analysis of the public’s willingness to mitigate ecological impacts of climate change. Journal of the American Statistical Association, 98(3), 533–544.CrossRefGoogle Scholar
  32. Layton, D. F., & Moeltner, K. (2004). The cost of power outages to heterogenous households–an application of the mixed gamma-lognormal distribution. In A. Alberini & R. Scarpa (Eds.), Applications of Simulation Methods in Environmental and Resource Economics (pp. 35–54). New York: Springer.Google Scholar
  33. McFadden, D. (1996). Computing willingness-to-pay in random utility models. Working Papers 011, University of California at Berkeley, Econometrics Laboratory Software Archive.Google Scholar
  34. Moeltner, K., & Layton, D. F. (2002). A censored random coefficients model for pooled survey data with application to the estimation of power outage costs. The Review of Economics and Statistics, 84(3), 552–561.CrossRefGoogle Scholar
  35. Rossi, P. E., Allenby, G. M., & McCulloch, R. (2005). Bayesian Statistics and Marketing. Chichester: John Wiley and Sons, Ltd.CrossRefGoogle Scholar
  36. Rossi, P. E., McCulloch, R. E., & Allenby, G. M. (1996). The value of purchase history data in target marketing. Marketing Science, 15(4), 321–340.CrossRefGoogle Scholar
  37. Sonnier, G., Ainslie, A., & Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.CrossRefGoogle Scholar
  38. Swamy, P. (1970). Efficient inference in a random coefficient regression model. Econometrica, 38(2), 311–323.CrossRefGoogle Scholar
  39. Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Wagner, H., & Duller, C. (2011). Bayesian model selection for logistic regression models with random intercept. Computational Statistics and Data Analysis. doi: 10.1016/j.csda.2011.06.033
  41. Werner, M. (1999). Allowing for zeros in dichotomous-choice contingent-valuation models. Journal of Business and Economic Statistics, 17(4), 479–485.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Energy Institute at the Johannes Kepler University LinzLinzAustria
  2. 2.Institute for Statistics and MathematicsVienna University of Economics and BusinessViennaAustria

Personalised recommendations