Quantitative Marketing and Economics

, Volume 4, Issue 1, pp 57–81

Modeling preference evolution in discrete choice models: A Bayesian state-space approach

  • Mohamed Lachaab
  • Asim Ansari
  • Kamel Jedidi
  • Abdelwahed Trabelsi


We develop discrete choice models that account for parameter driven preference dynamics. Choice model parameters may change over time because of shifting market conditions or due to changes in attribute levels over time or because of consumer learning. In this paper we show how such preference evolution can be modeled using hierarchial Bayesian state space models of discrete choice. The main feature of our approach is that it allows for the simultaneous incorporation of multiple sources of preference and choice dynamics. We show how the state space approach can include state dependence, unobserved heterogeneity, and more importantly, temporal variability in preferences using a correlated sequence of population distributions. The proposed model is very general and nests commonly used choice models in the literature as special cases.

We use Markov chain monte carlo methods for estimating model parameters and apply our methodology to a scanner data set containing household brand choices over an eight-year period. Our analysis indicates that preferences exhibit significant variation over the time-span of the data and that incorporating time-variation in parameters is crucial for appropriate inferences regarding the magnitude and evolution of choice elasticities. We also find that models that ignore time variation in parameters can yield misleading inferences about the impact of causal variables.


Preference evolution Hierarchical Bayesian state-space models Heterogeneity Multinomial probit Choice models Pricing Promotions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, J., & Chib, S. (1993). Bayesian analysis of binary and polychotomous data. Journal of the American Statistical Association, 88, 667–679.Google Scholar
  2. Allenby, G. M., & Lenk, P. J. (1994). Modeling household purchase behavior with logistic normal regression. Journal of the American Statistical Association, 89(428), 1218–1231.Google Scholar
  3. Allenby, G. M., & Lenk, P. J. (1995). Reassessing brand loyalty, price sensitivity, and merchandising effects on consumer brand choice. Journal of Business and Economic Statistics, 13(3), 281–289.Google Scholar
  4. Allenby, G. M., & Rossi, P, E. (1999). Marketing models of consumer heterogeneity. Journal of Econometrics, 89, 57–78.Google Scholar
  5. Barnard, J., McCulloch, R., & Meng, X. L. (2000). A natural strategy for modeling covariance matrices with applications to shrinkage. Statistica Sinica, 10, 1281–1311Google Scholar
  6. Carter, C. K., & Kohn, R. (1994). On gibbs sampling for state space models. Biometrika, 81, 541–553.CrossRefGoogle Scholar
  7. Chintagunta, Pradeep K. (1993). Investigating purchase incidence, brand choice and purchase quantity decisions of households. Marketing Science (pp. 184–208). Spring.Google Scholar
  8. Dekimpe, M., G., & Hanssens, M., D. (1995). The persistence of marketing effects on sales. Marketing Science, 14, 1–21.Google Scholar
  9. Erdem, T. (1996). A dynamic analysis of market structure based on panel data. Marketing Science, 15, 359–378.Google Scholar
  10. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.Google Scholar
  11. Geweke, J. F., Keane, M. P., & Runkle, D. E. (1997). Statistical inference in the multinomial probit model. Journal of Econometrics, 80, 125–165.CrossRefGoogle Scholar
  12. Guadagni, P. M., & Little, J. D. C. (1983). A logit model of brand choice calibrated on scanner data. Marketing Science, 2(3), 203–238.Google Scholar
  13. Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57, 97–109.CrossRefGoogle Scholar
  14. Hausman, J., & Wise, D. (1978). A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica, 45, 319–339.Google Scholar
  15. Heckman, J. J., Manski, C. F., & McFadden, D. (1981). Statistical models for discrete panel data. Structural analysis of discrete data with applications. pp. 114–178, Cambridge: MIT Press.Google Scholar
  16. Jedidi, K., Mela, F. C. & Gupta, S. (1999). Managing advertising and promotion for long-term profitability. Marketing science, 18, 1–22.Google Scholar
  17. Kalman, R. E. (1960). A new approach to linear filtering and prediction. Journal of Basic Engineering, 83, 95–108.Google Scholar
  18. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.Google Scholar
  19. Keane, M. (1997). Modeling heterogeneity and state dependence in consumer choice behavior. Journal of Business and Economic Statistics, 15(3), 310–327.Google Scholar
  20. McCulloch, R., & Rossi, P, E. (1994). An exact likelihood analysis of the multinomial probit model. Journal of Econometrics, 64, 207–240.Google Scholar
  21. McCulloch, R., Polson, N. G. & Rossi, P. E. (2000). A Bayesian analysis of the multinomial probit model with fully identified parameters. Journal of Econometrics, 99, 173–193.Google Scholar
  22. McCulloch R., & Rossi, P. E. (2000). Reply to nobile. Journal of Econometrics, 99, 347–348.Google Scholar
  23. McFadden, D. L. (1973). Conditional logit analysis of qualitative choice behavior, In P. Zarembka (ed.), Frontiers in Econometrics, (pp. 105–142), New York: Academic Press.Google Scholar
  24. Mela, F. C., Gupta, S., & Lehmann, L, R. (1997). The long-term impact of promotions and advertising on consumer brand choice. Journal of Marketing Research, 34, 248–261.Google Scholar
  25. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem.Phys, 21, 1087–1091.CrossRefGoogle Scholar
  26. Neal, R. M. (2003). Slice sampling (with discussion). Annals of statistics pp. 705–767.Google Scholar
  27. Newton, M. A., & Raftery, A. E. (1994). Approximate bayesian inference by the weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical Society, Series B, 56, 1–48.Google Scholar
  28. Nobile, A. (2000). Comment: Bayesian multinomial probit models with a normalization constraint. Journal of Econometrics, 99, 335–345.CrossRefGoogle Scholar
  29. Pauwels, K., Hanssens, M. D., & Siddarth, S. (2002). The long-term effects of price promotions on category incidence, brand choice and purchase quantity. Journal of marketing research.Google Scholar
  30. Priestly, M. B. (1980). State-dependent models: A general approach to non-linear time series analysis. Journal of Time Series Analysis, 1, 47–71.Google Scholar
  31. Roy, R., Chintagunta, P. K., & Haldar, S. (1996). A framework for investigating habits, the hand of the past. and heterogeneity in dynamic brand choice. Marketing Science, 15(3), 280–299.Google Scholar
  32. Seetharaman, P. B. (2003). Modeling multiple sources of state dependence in random utility models of brand choice: A distributed lag approach. Marketing Science, forthcoming.Google Scholar
  33. Fruhwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15, 183–202.Google Scholar
  34. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation, (with discussion). Journal of the American Statistical Association, 82, 528–550.Google Scholar
  35. Tsay, R., & McCulloch, R. (1994). Statistical analysis of economic time series via markov switching models. Journal of Times Series Analysis, 15, 523–539.Google Scholar
  36. West, M., & Harrison, P. J., (1997). Bayesian forecasting and dynamic models, 2nd Edition. New York: Springer-Verlag.Google Scholar
  37. Yang, S., Chen, Y., & Allenby, G. (2003). Bayesian analysis of simultaneous demand and supply. Quantitative marketing and economics, 1(3), pp. 251–275.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Mohamed Lachaab
    • 1
    • 2
  • Asim Ansari
    • 3
  • Kamel Jedidi
    • 3
  • Abdelwahed Trabelsi
    • 1
  1. 1.Institut Superieur de GestionUniversity of TunisTunisia
  2. 2.Clarkson UniversityNew YorkUSA
  3. 3.Graduate School of BusinessColumbia UniversityNew YorkUSA

Personalised recommendations