Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of partial-collapse measurement on quantum entanglement in noninertial frames

Abstract

An efficient method is proposed to improve two-qubit entanglement under the action of noise channel in noninertial frames by using partial-collapse measurement. We focus on the influence of partial-collapse measurement on entanglement for different noise channels in noninertial frames. It is shown that entanglement can be enhanced greatly for phase-flip, phase-damping, depolarizing and amplitude-damping channels. We obtain the optimal concurrence for the four noise channels, respectively. Moreover, ’entanglement sudden death’ can be avoided for amplitude-damping environment. Our work provides a novel method to improve quantum entanglement under both noise environment and Unruh effect and exhibits the ability of partial-collapse measurement as an important technique in relativistic quantum information.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bombelli, L., Koul, R., Lee, K.J., Sorkin, R.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

  2. 2.

    Callan, C., Wilzcek, F.: On geometric entropy. Phys. Lett. B 333, 55 (1994)

  3. 3.

    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

  4. 4.

    Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61, 104016 (2000)

  5. 5.

    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

  6. 6.

    Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

  7. 7.

    Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

  8. 8.

    Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 042333 (2009)

  9. 9.

    Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010)

  10. 10.

    Khan, S., Khan, M.K.: Open quantum systems in noninertial frames. J. Phys. A: Math. Theor. 44, 45305 (2011)

  11. 11.

    Zhou, J., Shi, R.H., Guo, Y.: Squeezed-state quantum key distribution with a Rindler observer. Quant. Inf. Process. 17(3), 47 (2018)

  12. 12.

    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

  13. 13.

    Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

  14. 14.

    Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14(2), 21603 (2019)

  15. 15.

    Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)

  16. 16.

    Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B. 789, 93–C105 (2019)

  17. 17.

    Rideout, D., et al.: Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quant. Gravit. 29, 224011 (2012)

  18. 18.

    Friis, N., Lee, A.R., Truong, K., Sabin, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

  19. 19.

    Ahmadzadegan, A., Martín-Martínez, E., Mann, R.B.: Cavities in curved spacetimes: the response of particle detectors. Phys. Rev. D 89, 024013 (2014)

  20. 20.

    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

  21. 21.

    Aharonov, Y., Botero, A., Pospescu, S., Reznik, B., Tollaksen, J.: Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130 (2002)

  22. 22.

    Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009)

  23. 23.

    Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

  24. 24.

    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

  25. 25.

    Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

  26. 26.

    Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

  27. 27.

    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

  28. 28.

    Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

  29. 29.

    Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quant. Process 14, 4395 (2015)

  30. 30.

    Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)

  31. 31.

    Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

  32. 32.

    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

  33. 33.

    Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

  34. 34.

    Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L., Wang, J.C.: Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. 12 Feb (2017). arXiv:1702.03508v1 [quant-ph]

  35. 35.

    Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quant. Inf. Process. 16, 90 (2017)

  36. 36.

    Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

  37. 37.

    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett 80, 2245 (1998)

  38. 38.

    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78, 5022 (1997)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11374096), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).

Author information

Correspondence to Xiang-Ping Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Wen, W., Rong, M. et al. Effect of partial-collapse measurement on quantum entanglement in noninertial frames. Quantum Inf Process 19, 106 (2020). https://doi.org/10.1007/s11128-020-2600-3

Download citation

Keywords

  • Quantum entanglement
  • Partial-collapse measurement
  • Noninertial frames
  • Noise channels