Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise

  • 27 Accesses

Abstract

This paper investigates the evolution and protection of quantum correlations (entanglement and quantum discord (QD) in particular), in a hybrid system formed by a qubit subjected to an external random field and a qutrit subjected to a colored noise generated either by a single or collection of many random bistable fluctuators (RBFs). Two different input states namely the one- and two-parameter class of states of qubit–qutrit are investigated. Entanglement and QD are quantified by means of negativity and geometric QD and their protection investigated by recourse to the weak measurement (WM) and weak measurement reversal (WMR) technique. It is shown that the immunity of entanglement and QD against decoherence can be efficiently increased by properly adjusting the parameters of the input states, no matter the spectrum of the colored noise and the number of RBFs considered. Moreover, it is shown that the WM and WMR technique fails in protecting entanglement in the studied system, but can effectively protect QD from the detrimental impacts of the decoherence. In fact, it is shown that performing a WM followed by a WMR on the qubit of the system allows to shield the QD of the system from decoherence even when the decoherence process is strengthen by considering a large number of RBFs affecting the qutrit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Xu, J.-S., Sun, K., Li, C.-F., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

  2. 2.

    Orieux, A., D’Arrigo, A., Ferranti, G., et al.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

  3. 3.

    D’Arrigo, A., Lo Franco, R., Benenti, G., et al.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2014)

  4. 4.

    Man, Z., Xia, Y., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

  5. 5.

    Nosrati, F., Castellini, A., Compagno, G., Lo Franco, R.: Control of noisy entanglement preparation through spatial indistinguishability (2019). arXiv:1907.00136 [quant-ph]

  6. 6.

    Mortezapour, A., Borji, M.A., Lo Franco, R.: Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments. Laser Phys. Lett. 14, 055201 (2017)

  7. 7.

    Lo Franco, R., D’Arrigo, A., Falci, G., Compagno, G., Paladino, E.: Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

  8. 8.

    D’Arrigo, A., Benenti, G., Lo Franco, R., et al.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12, 1461005 (2014)

  9. 9.

    D’Arrigo, A., Lo Franco, R., Benenti, G., et al.: Hidden entanglement in the presence of random telegraph dephasing noise. Phys. Scr. T153, 014014 (2013)

  10. 10.

    Mortezapour, A., Lo Franco, R.: Protecting quantum resources via frequency modulation of qubits in leaky cavities. Sci. Rep. 8, 14304 (2018)

  11. 11.

    Cianciaruso, M., Bromley, T.R., Roga, W., et al.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

  12. 12.

    Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

  13. 13.

    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

  14. 14.

    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

  15. 15.

    West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

  16. 16.

    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

  17. 17.

    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

  18. 18.

    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

  19. 19.

    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

  20. 20.

    Basit, A., Badshah, F., Ali, H., Ge, G.-Q.: Protecting quantum coherence and discord from decoherence of depolarizing noise via weak measurement and measurement reversal. EPL 118, 30002 (2017)

  21. 21.

    Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

  22. 22.

    Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

  23. 23.

    Lee, J.-C., Lim, H.-T., Hong, K.-H., Jeong, Y.-C., Kim, M.S., Kim, Y.-H.: Experimental demonstration of delayed-choice decoherence suppression. Nat. Commun. 5, 4522 (2014)

  24. 24.

    Lim, H.-T., Lee, J.-C., Hong, K.-H., Kim, Y.-H.: Avoiding entanglement sudden death using single qubit quantum measurement reversal. Opt. Express 22, 19055–19068 (2014)

  25. 25.

    Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)

  26. 26.

    Li, X.-G., Zou, J., Shao, B.: Protecting non-locality of multipartite states by feed-forward control. Quantum Inf. Process. 17, 123 (2018)

  27. 27.

    Yune, J., Hong, K.-H., Lim, H.-T., Lee, J.-C., et al.: Quantum discord protection from amplitude damping decoherence. Opt. Epress 23, 26012–26022 (2015)

  28. 28.

    Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Epress 19, 16309–16316 (2011)

  29. 29.

    Xiao, X., Li, Y.-L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

  30. 30.

    Hu, M.-L., Fan, H., Tian, D.-P.: Role of weak measurements on states ordering and monogamy of quantum correlation. Int. J. Theor. Phys. 54, 62–71 (2015)

  31. 31.

    Chen, Y., Zou, J., Long, Z.-W., Sha, B.: Protecting quantum Fisher information of N-qubit GHZ state by weak measurement with fips against dissipation. Sci. Rep. 7, 6160 (2017)

  32. 32.

    Sun, W.-Y., Wang, D., Ding, Z.-Y.O., Ye, Li: Recovering the lost steerability of quantum states within non-Markovian environments by utilizing quantum partially collapsing measurements. Laser Phys. Lett. 14, 125204 (2017)

  33. 33.

    Trapani, J.: Stochastic Noise Approach to Non-markovian Decoherence in Continuous Variable Open Quantum Systems. Ph.D. thesis (2017)

  34. 34.

    Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

  35. 35.

    Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)

  36. 36.

    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored noise environments. Phys. Rev. A 87, 052328 (2013)

  37. 37.

    Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \( 1/f^{\alpha } \) noise. In: Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier (2013). https://doi.org/10.1109/ICNF,6578952

  38. 38.

    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quantum Inf. 10, 1241005 (2012)

  39. 39.

    Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 30, 1750046 (2016)

  40. 40.

    Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 380 (2016)

  41. 41.

    Kenfack, L.T., Tchoffo, M., Fai, L.C., Fouokeng, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Phys. B 511, 123 (2017)

  42. 42.

    Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise. Eur. Phys. J. Plus 132, 91 (2017)

  43. 43.

    Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamics of tripartite quantum correlations in mixed classical environments: the joint effects of the random telegraph and static noises. Int. J. Quantum Inf. 15, 1750038 (2017)

  44. 44.

    Kenfack, L.T., Tchoffo, M., Fai, L.C.: Decoherence and protection of entanglement of a system of three qubits driven by a classical Gaussian distributed fluctuating field. Phys. Lett. A 382, 2818 (2018)

  45. 45.

    Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise. Quantum Inf. Process. 17, 76 (2018)

  46. 46.

    Kenfack, L.T., Tchoffo, M., Jipdi, N.M., Fouokeng, G.C., Fai, L.C.: Dynamics of entanglement and state-space trajectories followed by a system of four-qubit in the presence of random telegraph noise: common environment (CE) versus independent environment. J. Phys. Commun. 2, 055011 (2018)

  47. 47.

    Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum correlations and decoherence dynamics for a qutrit-qutrit system under random telegraph noise. Quantum Inf. Process. 16, 191 (2017)

  48. 48.

    Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum correlations and coherence dynamics in qutrit–qutrit systems under mixed classical environmental noises. Int. J. Quantum Inf. 15, 1750047 (2017)

  49. 49.

    Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Disentanglement and quantum states transitions in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state. Quantum Inf. Process. 17, 37 (2018)

  50. 50.

    Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Free and bound entanglement dynamics in qutrit systems under Markov and non-Markov classical noise. Quantum Inf. Process. 17, 190 (2018)

  51. 51.

    Karpat, G., Gedik, Z.: Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166–4171 (2011)

  52. 52.

    Tchoffo, M., Tsokeng, A.T., Tiokang, O.M., Nganyo, P.N., Fai, L.C.: Frozen entanglement and quantum correlations of one-parameter qubit–qutrit states under classical noise effects. Phys. Lett. A 383, 1856–1864 (2019)

  53. 53.

    Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92, 032311 (2015)

  54. 54.

    Lo Franco, R., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)

  55. 55.

    Guo, Y., Fang, M., Zhang, S., Liu, X.: Quantum correlations of three-qubit states driven by a classical random external field. Phys. Scr. 90, 035103 (2015)

  56. 56.

    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

  57. 57.

    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

  58. 58.

    Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

  59. 59.

    Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)

  60. 60.

    Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

  61. 61.

    Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)

  62. 62.

    Tufarelli, T., MacLean, T., Girolami, D., et al.: The geometric approach to quantum correlations: computability versus reliability. J. Phys. A Math. Theor. 46, 275308 (2013)

  63. 63.

    Piani, M.: The problem with the geometric discord. Phys. Rev. A 86, 034101 (2012)

  64. 64.

    Andersson, E., Cresser, J.D., Hall, M.J.W.: Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt. 54, 1695 (2007)

  65. 65.

    Cresser, J.D., Facer, C.: Master equation with memory for systems driven by classical noise. Opt. Commun. 283, 773 (2010)

  66. 66.

    Sun, W.-Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, non-locality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

Download references

Author information

Correspondence to L. T. Kenfack.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: time-evolved density matrices of the system

When the system is initially prepared in the one-parameter class of states of qubit–qutrit, its final state after interacting with the noises takes the following form:

$$\begin{aligned} \rho ^{1p} \left( t\right)= & {} {\mathcal {Y}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } +{\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\, {\mathcal {E}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 00 \right| } +{\left| 02 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {A}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\left| 12 \right\rangle } {\left\langle 12 \right| } \right) +{\mathcal {B}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\left| 11 \right\rangle } {\left\langle 11 \right| } \right) \nonumber \\&+\, {\mathcal {C}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\left| 10 \right\rangle } {\left\langle 10 \right| } \right) +{\mathcal {F}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\, {\mathcal {J}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {N}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 02 \right| } \right) , \end{aligned}$$
(A1)

with

$$\begin{aligned} {\mathcal {A}}\left( t\right)= & {} \frac{1}{4} \left( 3p-1\right) \vartheta \left( t\right) \xi \left( t\right) +\frac{\left( 1-3p\right) }{16} \vartheta _{2} \left( t\right) +\frac{1}{16} \left( 3-p\right) ,\\ {\mathcal {F}}\left( t\right)= & {} \frac{\left( 1-p\right) }{16} \vartheta _{2} \left( t\right) \xi \left( t\right) +\frac{\left( 3p-1\right) }{4} \vartheta \left( t\right) +\frac{3\left( 1-p\right) }{16} \xi \left( t\right) ,\\ {\mathcal {E}}\left( t\right)= & {} \left( 1-p\right) \frac{\xi \left( t\right) \left( \vartheta _{2} \left( t\right) -1\right) }{16}; {\mathcal {Y}}\left( t\right) =\frac{\left( 3p-1\right) }{16} \left( 1-\vartheta _{2} \left( t\right) \right) ,\\ {\mathcal {N}}\left( t\right)= & {} \frac{\left( 1-3p\right) }{4} \vartheta \left( t\right) +\frac{3\left( 1-p\right) }{16} \xi \left( t\right) +\frac{\left( 1-p\right) }{16} \vartheta _{2} \left( t\right) \xi \left( t\right) ,\\ {\mathcal {C}}\left( t\right)= & {} \frac{\left( 1-3p\right) }{4} \vartheta \left( t\right) \xi \left( t\right) +\frac{\left( 1-3p\right) }{16} \vartheta _{2} \left( t\right) +\frac{\left( 3-p\right) }{16},\\ {\mathcal {B}}\left( t\right)= & {} \frac{\left( 3p-1\right) }{8} \vartheta _{2} \left( t\right) +\frac{1}{8} \left( p+1\right) ,\\ {\mathcal {J}}(t)= & {} \frac{\left( p-1\right) }{8} \left( \vartheta _{2}\left( t\right) -1\right) \xi (t). \end{aligned}$$

In the case of two-parameter class of states the following form is obtained:

$$\begin{aligned} \rho ^{2p} \left( t\right)= & {} {\mathcal {A}}\left( t\right) {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\mathcal {B}}\left( t\right) {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\mathcal {C}}\left( t\right) {\left| 02 \right\rangle } {\left\langle 02 \right| }\nonumber \\&+\, {\mathcal {Y}}\left( t\right) {\left| 10 \right\rangle } {\left\langle 10 \right| } +{\mathcal {E}}\left( t\right) +{\left| 11 \right\rangle } {\left\langle 11 \right| } +{\mathcal {F}}\left( t\right) {\left| 12 \right\rangle } {\left\langle 12 \right| }\nonumber \\&+\,{\mathcal {G}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {I}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\, {\mathcal {J}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {K}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 01 \right| } \right) \nonumber \\&+\,{\mathcal {L}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 02 \right| } \right) +{\mathcal {N}}\left( t\right) \left( {\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) , \end{aligned}$$
(A2)

with

$$\begin{aligned} {\mathcal {F}}\left( t\right)= & {} \frac{1}{32} \Big ( 4\alpha \left( 3+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) - \left( -5+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) \times \\&\times \,\left( 3\beta +\mu \right) + \left( -1+4\vartheta \left( t\right) -3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {G}}\left( t\right)= & {} \frac{1}{32} \left( \vartheta \left( t\right) _{2} -1\right) \left( 4\alpha +3\beta \left( \xi \left( t\right) -1\right) -\mu \left( 1+3\xi \left( t\right) \right) \right) ,\\ {\mathcal {A}}\left( t\right)= & {} \frac{1}{32} \Big ( 4\alpha \left( 3-4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) +\left( 5+4\vartheta \left( t\right) -\vartheta _{2} \left( t\right) \right) \times \\&\times \,\left( 3\beta +\mu \right) +\left( 1+4\vartheta \left( t\right) +3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {B}}\left( t\right)= & {} \frac{1}{16} \Big ( -4\alpha \left( \vartheta _{2} \left( t\right) -1\right) +\left( 3+\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) -\\&\,\left( 1+3\vartheta _{2} \left( t\right) \right) \left( \beta -\alpha \right) \xi \left( t\right) \Big ),\\ {\mathcal {I}}\left( t\right)= & {} \frac{1}{8} \left( \beta -\mu \right) \left( -\vartheta _{2} \left( t\right) +\vartheta \left( t\right) \left( \xi \left( t\right) -1\right) +\xi \left( t\right) \right) ,\\ {\mathcal {J}}\left( t\right)= & {} \frac{1}{8} \left( \beta -\mu \right) \left( \vartheta \left( t\right) +\vartheta _{2} \left( t\right) +\xi \left( t\right) +\vartheta \left( t\right) \xi \left( t\right) \right) ,\\ {\mathcal {K}}\left( t\right)= & {} -\frac{1}{8} \left( \beta -\mu \right) \left( \vartheta \left( t\right) -\vartheta _{2} \left( t\right) +\xi \left( t\right) \left( \vartheta \left( t\right) -1\right) \right) ,\\ {\mathcal {C}}\left( t\right)= & {} \frac{1}{32} \Big (4\alpha \left( 3+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) -\left( -5+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&-\,\left( -1+4\vartheta \left( t\right) -3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {Y}}\left( t\right)= & {} \frac{1}{32} \Big (4\alpha \left( 3-4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) +\left( 5+4\vartheta \left( t\right) -\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&-\,\left( 1+4\vartheta \left( t\right) +3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {N}}\left( t\right)= & {} \frac{1}{32} \left( \vartheta _{2} \left( t\right) -1\right) \left( 4\alpha -3\beta \left( 1+\xi \left( t\right) \right) +\mu \left( 3\xi \left( t\right) -1\right) \right) ,\\ {\mathcal {L}}\left( t\right)= & {} -\frac{1}{8} \left( \beta -\mu \right) \left( \vartheta _{2} \left( t\right) +\vartheta \left( t\right) \left( \xi \left( t\right) -1\right) -\xi \left( t\right) \right) ,\\ {\mathcal {E}}\left( t\right)= & {} \frac{1}{16} \Big (-4\alpha \left( \vartheta _{2} \left( t\right) -1\right) +\left( 3+\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&+\,\left( 1+3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ). \end{aligned}$$

where the time-dependent function \( \vartheta _{n}(t) (n=1,2) \) and \(\xi (t) \) are the decoherence factors whose explicit expressions can be written as follows:

$$\begin{aligned} \xi (t)= & {} \exp \left( -\dfrac{\Gamma \tau _{c}}{2}\left[ \dfrac{t}{\tau _{c}} +\exp \left( -\dfrac{t}{\tau _{c}}\right) -1 \right] \right) \end{aligned}$$
(A3)
$$\begin{aligned} \vartheta _{n}(t)= & {} \left[ \int _{\gamma _{1}}^{\gamma _{2}}\Psi _{n}(\gamma ,t){{\,\mathrm{P}\,}}(\gamma )\mathrm{d}\gamma \right] ^{N}; \end{aligned}$$
(A4)

with

$$\begin{aligned} \begin{aligned}&\Psi _{n}(\gamma ,t)= \left\{ \begin{aligned}&\displaystyle \mathrm{e}^{\displaystyle -\gamma t}\left[ \begin{aligned}&\dfrac{\gamma \sinh \left( t\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}\right) }{\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}}+\cosh \left( t\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}\right) \end{aligned} \right] ,\gamma >n\lambda \\ \\&\displaystyle \mathrm{e}^{\displaystyle -\gamma t}\left[ \begin{aligned}&\dfrac{\gamma \sin \left( t\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}\right) }{\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}}+ \cos \left( t\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}\right) \end{aligned} \right] ,\gamma <n\lambda \end{aligned}, \right. \end{aligned} \end{aligned}$$
(A5)

Appendix B: final state of system after performing the WM and WMR control scheme

$$\begin{aligned} \rho ^{1p}(t,m,m_{r})= & {} {\mathcal {A}}(t)\left( {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\left| 12 \right\rangle } {\left\langle 12 \right| } \right) +{\mathcal {B}}(t)\left( {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\left| 11 \right\rangle } {\left\langle 11 \right| } \right) \nonumber \\&+\,{\mathcal {C}}(t)\left( {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\left| 10 \right\rangle } {\left\langle 10 \right| } \right) +{\mathcal {I}}(t)\left( {\left| 02 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {E}}(t)\left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } +{\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\,{\mathcal {F}}(t)\left( {\left| 00 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 00 \right| } +{\left| 02 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {G}}(t)\left( {\left| 00 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {H}}(t)\left( {\left| 01 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 01 \right| } \right) ,\nonumber \\ \end{aligned}$$
(B1)

where

$$\begin{aligned} {\mathcal {B}}(t)= & {} \frac{3\left( \left( p-\frac{1}{3} \right) \vartheta _{2}(t) +\frac{1}{3} \left( 1+p\right) \right) \left( 2+\left( \xi (t)-1\right) m\right) \left( m_{r} -1\right) }{\left( 4\xi (t)m_{r} -4m_{r} +8\right) m+8m_{r} -16},\\ {\mathcal {I}}(t)= & {} \frac{3\left( \vartheta _{2}(t) -1\right) \left( 2+\left( \xi (t)-1\right) m\right) \left( m_{r} -1\right) \left( p-\frac{1}{3} \right) }{\left( 16+8\left( \xi (t)-1\right) m_{r} \right) m+16m_{r} -32},\\ {\mathcal {E}}(t)= & {} \frac{\sqrt{1-m_{r} } \left( p-1\right) \xi (t)\left( \vartheta _{2}(t) -1\right) \sqrt{1-m} }{\left( 8+\left( 4\xi (t)-4\right) m\right) m_{r} +8m-16} ,\\ {\mathcal {F}}(t)= & {} \frac{\sqrt{1-m_{r} } \sqrt{1-m} \left( \left( p-1\right) \left( \vartheta _{2}(t) +3\right) \xi (t)+4\vartheta (t)\left( 1-3p\right) \right) }{4\xi (t)mm_{r} -4\left( m_{r} -2\right) \left( m-2\right) } ,\\ {\mathcal {G}}(t)= & {} \frac{-\sqrt{1-m_{r} } \left( p-1\right) \xi (t)\left( \vartheta _{2}(t) -1\right) \sqrt{1-m} }{\left( 4+\left( 2\xi (t)-2\right) m\right) m_{r} +4m-8} ,\\ {\mathcal {H}}(t)= & {} \frac{\sqrt{1-m_{r} } \sqrt{1-m} \left( \left( p-1\right) \left( \vartheta _{2}(t) +3\right) \xi (t)-4\vartheta (t)\left( 1-3p\right) \right) }{4\xi (t)mm_{r} -4\left( m_{r} -2\right) \left( m-2\right) } ,\\ {\mathcal {A}}(t)= & {} \frac{\begin{aligned}-12\Bigg (&\left( \left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{1}{12} \right) p-\frac{\vartheta _{2}(t) }{12} -\frac{1}{4} -\frac{1}{3} \vartheta (t)\right) \left( \xi (t)-1\right) m-\\ {}&-2\left( p-\frac{1}{3} \right) \vartheta (t)\xi (t)+\left( \frac{1}{6} +\frac{\vartheta _{2}(t) }{2} \right) p-\frac{\vartheta _{2}(t) }{6} -\frac{1}{2}\Bigg )\left( m_{r} -1\right) \end{aligned}}{\left( 8\xi (t)m_{r} -m_{r} +16\right) m+16m_{r} -32},\\ {\mathcal {C}}(t)= & {} \frac{\begin{aligned}12\Bigg (&\left( \xi (t)-1\right) \left( \left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{1}{12} \right) p+\frac{\vartheta _{2}(t) }{12} +\frac{1}{4} -\frac{1}{3} \vartheta (t)\right) m-\\ {}&-2\left( p-\frac{1}{3} \right) \vartheta (t)\xi (t)-\left( \frac{1}{6} +\frac{\vartheta _{2}(t) }{2} \right) p+\frac{\vartheta _{2}(t) }{6} +\frac{1}{2}\Bigg )\left( m_{r} -1\right) \end{aligned}}{\left( 8\xi (t)m_{r} -8m_{r} +16\right) m+16m_{r} -32}, \end{aligned}$$
$$\begin{aligned} \rho ^{2p}(t,m,m_{r})= & {} {\mathcal {A}}(t) {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\mathcal {B}}(t) {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\mathcal {C}}(t) {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\mathcal {E}}(t) {\left| 10 \right\rangle } {\left\langle 10 \right| } \nonumber \\&+\,{\mathcal {H}}(t) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {I}}(t) \left( {\left| 00 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\,{\mathcal {J}}(t) \left( {\left| 01 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {K}}(t) \left( {\left| 01 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 01 \right| } \right) \nonumber \\&+\,{\mathcal {L}}(t) \left( {\left| 02 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 02 \right| } \right) +{\mathcal {M}}(t) \left( {\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\,{\mathcal {F}}(t) +{\left| 11 \right\rangle } {\left\langle 11 \right| } +{\mathcal {G}}(t) {\left| 12 \right\rangle } {\left\langle 12 \right| }, \end{aligned}$$
(B2)

where

$$\begin{aligned} {{\,\mathrm{T}\,}}= & {} 2\left( \left( \xi (t) -1\right) m_{r} +2\right) m+4\left( m_{r} -2\right) ,\\ {\mathcal {I}}(t)= & {} \frac{ -\Bigg ( \left( \vartheta (t)+1\right) \xi (t)-\vartheta (t)-\vartheta _{2}(t)\Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}},\\ {\mathcal {J}}(t)= & {} \frac{-\Bigg ( \left( \vartheta (t)+1\right) \xi (t)\vartheta (t)+\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}},\\ {\mathcal {K}}(t)= & {} \frac{\Bigg (\left( \vartheta (t)-1\right) \xi (t)+\vartheta (t)-\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}} ,\\ {\mathcal {L}}(t)= & {} \frac{\Bigg (\left( \vartheta (t)-1\right) \xi (t)-\vartheta (t)+\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}} ,\\ {\mathcal {A}}(t)= & {} \frac{\left( 1-m_{r}\right) }{{{\,\mathrm{T}\,}}} \Bigg (\left( \xi (t)-1\right) \left( \left( -\frac{1}{2} \vartheta (t)+\frac{3}{8} \vartheta _{2}(t) -\frac{7}{8}\right) \beta \right. \\&\,\left. +\left( -\frac{1}{2} \vartheta (t)-\frac{1}{8} \vartheta _{2}(t) -\frac{3}{8} \right) \mu +\left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \right) m\\&-\,\frac{1}{2} \left( \vartheta (t)+\frac{3}{2} \vartheta _{2}(t) +\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( \frac{3}{4} \vartheta _{2}(t) -\frac{3}{2} \vartheta (t)-\frac{15}{8} \right) \beta +\left( \frac{1}{8} \vartheta _{2}(t) -\frac{1}{2} \vartheta (t)-\frac{5}{8} \right) \mu \\&+\,2\left( -\frac{1}{4} \vartheta _{2}(t) +\vartheta (t)-\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {B}}(t)= & {} \frac{\left( 1-m_{r}\right) }{2{{\,\mathrm{T}\,}}} \Bigg (\left( \xi (t)-1\right) \left( \left( -\frac{3}{2} \vartheta _{2}(t) -\frac{5}{2} \right) \beta \right. \\&\left. +\,\left( \alpha +\frac{1}{2} \mu \right) \left( \vartheta _{2}(t) -1\right) \right) m+\frac{3}{2} \left( \vartheta _{2}(t) +\frac{1}{3} \right) \left( \beta -\mu \right) \xi (t)\\&+\,\left( -\frac{3}{2} \vartheta _{2}(t) -\frac{9}{2} \right) \beta +\left( -\frac{3}{2} -\frac{1}{2} \vartheta _{2}(t) \right) \mu +2\alpha \left( \vartheta _{2}(t) -1\right) \Bigg ),\\ {\mathcal {C}}(t)= & {} \frac{\left( m_{r} -1\right) }{{{\,\mathrm{T}\,}}} \Bigg ( \left( \xi (t)-1\right) \left( \left( -\frac{1}{2} \vartheta (t)-\frac{3}{8} \vartheta _{2}(t) +\frac{7}{8} \right) \beta \right. \\&\left. +\,\left( -\frac{1}{2} \vartheta (t)+\frac{1}{8} \vartheta _{2}(t) +\frac{3}{8} \right) \mu +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4} \right) \alpha \right) m \\&-\,\frac{1}{2} \left( \vartheta (t)-\frac{3}{2} \vartheta _{2}(t) -\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t) \\&+\,\left( -\frac{3}{8} \vartheta _{2}(t) -\frac{3}{2} \vartheta (t)+\frac{15}{8} \right) \beta +\left( -\frac{1}{8} \vartheta _{2}(t) -\frac{1}{2} \vartheta (t)+\frac{5}{8} \right) \mu \\&+\,2\left( \frac{1}{4} \vartheta _{2}(t) +\vartheta (t)+\frac{3}{4} \right) \alpha \Bigg ), \end{aligned}$$
$$\begin{aligned} {\mathcal {E}}(t)= & {} \frac{1}{6{{\,\mathrm{T}\,}}} \Bigg ( -8\left( \left( -\frac{1}{2} \vartheta (t)+\frac{3}{8} \vartheta _{2}(t) -\frac{7}{8} \right) \beta \right. \\&\left. +\,\left( -\frac{1}{2} \vartheta (t)-\frac{1}{8} \vartheta _{2}(t) -\frac{3}{8} \right) \mu +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \right) \left( \xi (t)+1\right) m \\&+\,4\left( \vartheta (t)+\frac{3}{4} \vartheta _{2}(t) +\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( -12\vartheta (t)+3\vartheta _{2}(t) -15\right) \beta +\left( -4\vartheta (t)+\vartheta _{2}(t) -5\right) \mu \\&+\,16\left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {F}}(t)= & {} -\frac{\xi (t)+1}{2{{\,\mathrm{T}\,}}} \Bigg ( \left( -\frac{3}{2} \vartheta _{2}(t) -\frac{5}{2} \right) \beta \\&+\,\left( \alpha +\frac{\mu }{2} \right) \left( \vartheta _{2}(t) -1\right) m-3\left( \vartheta _{2}(t) +\frac{1}{3} \right) \left( \beta -\mu \right) \xi (t)\\&+\,\left( -3\vartheta _{2}(t) -9\right) \beta -\left( \vartheta _{2}(t) +3\right) \mu +4a\left( \vartheta _{2}(t)-1\right) \Bigg ),\\ {\mathcal {G}}(t)= & {} \frac{1}{8{{\,\mathrm{T}\,}}} \Bigg ( 8\left( \left( -\frac{1}{2} \vartheta (t)-\frac{3}{8} \vartheta _{2}(t) +\frac{7}{8} \right) \beta \right. \\&+\,\left( -\frac{1}{2} \vartheta (t)+\frac{1}{8} \vartheta _{2}(t) +\frac{3}{8} \right) \mu \\&\left. +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4}\right) \alpha \right) \left( \xi (t)+1\right) m \\&-\,4\left( \vartheta (t)-\frac{3}{4} \vartheta _{2}(t) -\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( 12\vartheta (t)+3\vartheta _{2}(t) -15\right) \beta +\left( 4\vartheta (t)+\vartheta _{2}(t) -5\right) \mu \\&-\,16\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {H}}(t)= & {} \frac{\left( \left( \xi (t)-1\right) \left( -\frac{3}{2} \beta +\frac{\mu }{2} +\,\alpha \right) m+\left( \frac{3}{2} \beta -\frac{3}{2} \mu \right) \xi (t)+2\alpha -\frac{\mu }{2} -\frac{3\beta }{2} \right) \left( m_{r} -1\right) \left( \vartheta _{2}(t) -1\right) }{4{{\,\mathrm{T}\,}}},\\ {\mathcal {M}}(t)= & {} \frac{\left( \vartheta _{2}(t) -\,1\right) \left( \left( -\frac{3\beta }{2} +\frac{\mu }{2} +\,\alpha \right) \left( \xi (t)+1\right) m+\left( \frac{3\beta }{2} -\,\frac{3\mu }{2} \right) \xi (t)+\frac{3\beta }{2} -\,2\alpha +\frac{\mu }{2} \right) }{4{{\,\mathrm{T}\,}}}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kenfack, L.T., Tchoffo, M., Javed, M. et al. Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise. Quantum Inf Process 19, 107 (2020). https://doi.org/10.1007/s11128-020-2599-5

Download citation

Keywords

  • Quantum correlations
  • Classical noise
  • WM and WMR scheme