Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms


Based on the modified flexible representation of quantum images, a novel quantum image encryption algorithm was proposed in this paper. The encryption process performs Arnold scrambling operation to disturb the quantum image information in spatial domain first. Then, quantum wavelet transforms are employed to decompose the scrambled quantum image into multiscale resolution (i.e., a sequence of subimages) in the frequency domain, which are mainly divided into two parts: the low-frequency component (i.e., the approximation) and high-frequency detail information (i.e., the horizontal details, vertical details and diagonal details in each decomposition level). Following that, Arnold scrambling operations are implemented to encrypt the wavelet coefficients within each subimage in the frequency domain once again. Finally, based on inverse quantum wavelet transforms, the encrypted wavelet coefficients can affect the pixel values of the entire reconstructed quantum images. Due to the fact that all the quantum operations are invertible, the decryption process of the encrypted image is performed in a straightforward manner by reversing all of the quantum operations within quantum image encryption process. The proposed encryption algorithm is simulated on a classical computer with MATLAB environments. Experimental results and numerical analysis indicate that the presented algorithm has a good encrypted effect and high security.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. 1.

    Feynman, R.P.: Simulating physics with quantum computers. Int. J. Theor. Phys. 21, 467–488 (1982)

  2. 2.

    Stajic, J.: The future of quantum information processing. Science 339, 1163 (2013)

  3. 3.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  4. 4.

    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Lond. Math. Soc. A 400, 97–117 (1985)

  5. 5.

    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Symposium on the Theory of Computing, pp. 212–219 (1996)

  6. 6.

    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  7. 7.

    Iliyasu, A.M.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)

  8. 8.

    Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

  9. 9.

    Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

  10. 10.

    Venegas-Andraca, S.B.S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, pp. 134–147 (2003)

  11. 11.

    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

  12. 12.

    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

  13. 13.

    Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–407 (2013)

  14. 14.

    Li, H.S., Zhu, Q.X., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

  15. 15.

    Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

  16. 16.

    Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

  17. 17.

    Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

  18. 18.

    Yang, Y.G., Jia, X., Sun, S.J., Pan, Q.X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)

  19. 19.

    Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

  20. 20.

    Yuan, S.Z., Mao, X., Xue, Y.L., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

  21. 21.

    Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

  22. 22.

    Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)

  23. 23.

    Li, H.S., Chen, X., Xia, H.Y., et al.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

  24. 24.

    Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 341–354 (2019)

  25. 25.

    Wang, L., Ran, Q., Ma, J., et al.: QRCI: a new quantum representation model of color digital images. Opt. Commun. 438, 147–158 (2019)

  26. 26.

    Li, H.S., Song, S., Fan, P., et al.: Quantum vision representations and multi-dimensional quantum transforms. Inf. Sci. 502, 42–58 (2019)

  27. 27.

    Fan, P., Zhou, R.G., Jing, N.H., Li, H.S.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)

  28. 28.

    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, 113–123 (2010)

  29. 29.

    Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

  30. 30.

    Zhou, R.G., Tan, C.Y., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

  31. 31.

    Pang, C.Y., Zhou, R.G., Hu, B.Q., et al.: Signal and image compression using quantum discrete cosine transform. Inf. Sci. 473, 121–141 (2019)

  32. 32.

    Jiang, N., Lu, X.W., Hu, H., et al.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57(3), 611–636 (2018)

  33. 33.

    Li, H.S., Fan, P., Xia, H.Y., Song, S.: Quantum multi-level wavelet transforms. Inf. Sci. 504, 113–135 (2019)

  34. 34.

    Li, H.S., Fan, P., Xia, H.Y., et al.: The multi-level and multi-dimensional quantum wavelet packet transforms. Sci. Rep. 8, 1–23 (2018)

  35. 35.

    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption algorithm based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 480–487 (2013)

  36. 36.

    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

  37. 37.

    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

  38. 38.

    Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

  39. 39.

    Li, H.S., Li, C.Y., Chen, X., Xia, H.Y.: Quantum image encryption algorithm based on NASS. Int. J. Theor. Phys. 57(12), 3745–3760 (2018)

  40. 40.

    Li, H.S., Li, C.Y., Chen, X., Xia, H.Y.: Quantum image encryption based on phase-shift transform and quantum Haar wavelet packet transform. Mod. Phys. Lett. A 34, 1950214 (2019)

  41. 41.

    Tan, R.C., Lei, T., Zhao, Q.M., et al.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)

  42. 42.

    Li, L., Abd-El-Atty, B., Abd El-Latif, A.A., Ghoneim, A.: Quantum color image encryption based on multiple discrete chaotic systems. In: 2017 Federated Conference on Computer Science and Information Systems (2017).

  43. 43.

    Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)

  44. 44.

    Ran, Q.W., Wang, L., Ma, J., et al.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)

  45. 45.

    Jiang, N., Dong, X., Hu, H., et al.: Quantum image encryption based on Henon mapping. Inte. J. Theor. Phys. 58(3), 979–991 (2019)

  46. 46.

    Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3488 (1995)

  47. 47.

    Arnold, V.I.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)

  48. 48.

    Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)

  49. 49.

    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1997)

  50. 50.

    Taubman, D.S.: JPEG2000: Image Compression Fundamentals, Standards and Practice. J. Electron. Imaging (2002)

  51. 51.

    Olkkonen, H.: Discrete Wavelet Transforms-Algorithms and Applications. IN-TECH (2011)

  52. 52.

    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996)

  53. 53.

    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

Download references


This work is supported by the National Key R&D Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205 and Scientific Research Fund of Hunan Provincial Education Department under Grant No. 18B420.

Author information

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest exists in the submission of this manuscript, and all authors have approved this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhou, R., Luo, J. et al. Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms. Quantum Inf Process 19, 82 (2020) doi:10.1007/s11128-020-2579-9

Download citation


  • Quantum computing
  • Image encryption
  • Arnold scrambling
  • Discrete wavelet transforms
  • Computational complexity