Strong polygamy and monogamy relations for multipartite quantum systems

  • 60 Accesses


Monogamy and polygamy are the most striking features of the quantum world. We investigate the monogamy and polygamy relations satisfied by all quantum correlation measures for arbitrary multipartite quantum states. By introducing residual quantum correlations, analytical polygamy inequalities are presented, which are shown to be tighter than the existing ones. Then, similar to polygamy relations, we obtain strong monogamy relations that are better than all the existing ones. Typical examples are presented for illustration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)

  2. 2.

    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

  3. 3.

    Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)

  4. 4.

    Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)

  5. 5.

    Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)

  6. 6.

    Kim, J.S.: Negativity and tight constraints of multiqubit entanglement. Phys. Rev. A 97, 012334 (2018)

  7. 7.

    Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)

  8. 8.

    Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

  9. 9.

    Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)

  10. 10.

    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

  11. 11.

    Jin, Z.X., Fei, S.M.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)

  12. 12.

    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

  13. 13.

    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

  14. 14.

    Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)

  15. 15.

    Jin, Z.X., Fei, S.M.: Finer distribution of quantum correlations among multiqubit systems. Quantum Inf Process 18, 21 (2019)

  16. 16.

    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bells inequality violations. Phys. Rev. A 82, 032313 (2010)

  17. 17.

    Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge. Lecture Notes in Chemistry, vol. 72. Springer, Berlin (2000)

  18. 18.

    Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)

  19. 19.

    Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)

  20. 20.

    Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

  21. 21.

    Prabhu, R., Pati, A.K., Sen, A., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger–Horne–Zeilinger versus W states. Phys. Rev. A 85, 040102(R) (2012)

  22. 22.

    Salini, K., Prabhu, R., Sen, A., Sen, U.: Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous. Ann. Phys. 348, 297–305 (2014)

  23. 23.

    Jin, Z.X., Fei, S.M.: Monogamy relations of all quantum correlation measures for multipartite quantum systems. Optics Commun. 446, 39–43 (2019)

Download references


This work is supported by the NSF of China under Grant Nos. 11847209 and 11675113; the Key Project of Beijing Municipal Commission of Education (Grant No. KZ201810028042); Beijing Natural Science Foundation (Grant No. Z190005); and China Postdoctoral Science Foundation Funded Project.

Author information

Correspondence to Zhi-Xiang Jin or Shao-Ming Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Fei, S. Strong polygamy and monogamy relations for multipartite quantum systems. Quantum Inf Process 19, 45 (2020) doi:10.1007/s11128-019-2540-y

Download citation


  • Polygamy relation
  • Monogamy relation
  • Multipartite systems
  • Residual quantum correlation