Advertisement

Optimal estimation of parameters for scalar field in an expanding spacetime exhibiting Lorentz invariance violation

  • Xiaobao Liu
  • Jiliang JingEmail author
  • Jieci Wang
  • Zehua TianEmail author
Article
  • 26 Downloads

Abstract

We address the optimal estimation of quantum parameters, in the framework of local quantum estimation theory, for a massive scalar quantum field in the expanding Robertson–Walker universe exhibiting Lorentz invariance violation (LIV). We find that, in the estimation of cosmological parameters, the ultimate bounds to the precision of the Lorentz-invariant massive scalar field can be improved due to the effects of LIV under some appropriate conditions. We also show that, in the Lorentz-invariant massive scalar field and massless scalar field due to LIV backgrounds, the optimal precision can be achieved by choosing the particles with some suitable LIV, cosmological and field parameters. Moreover, in the estimation of LIV parameter during the spacetime expansion, we prove that the appropriate momentum mode of field particles and larger cosmological parameters can provide us a better precision.

Keywords

Lorentz invariance violation Expanding universe Local quantum estimation theory 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11875025 and 11675052. Hunan Provincial Natural Science Foundation of China under Grant No. 2018JJ1016. The project was funded by the CAS Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of Science (No. 18010203). Young Scientific Talents growth project of the Department of Education of Guizhou Province under Grant no. QJHKYZ[2019]129. The talent recruitment program of Liupanshui Normal University of China under Grant no. LPSSYKYJJ201906.

References

  1. 1.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 1. Cambridge University Press, Cambridge (1988)Google Scholar
  2. 2.
    Polchinski, J.: String Theory, vol. 1. Cambridge University Press, New York (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, New York (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, New York (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Connes, A.: Noncommutative Geometry. Academic Press, New York (1994)zbMATHGoogle Scholar
  6. 6.
    Connes, A.: A short survey of noncommutative geometry. J. Math. Phys. 41, 3832 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Majid, S.: Meaning of noncommutative geometry and the Planck-scale quantum group. Lect. Notes Phys. 541, 227 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Overduin, J.M., Hamna, A.: Extra dimensions and violations of Lorentz symmetry. arXiv:1607.04580
  9. 9.
    Rizzo, T.G.: Lorentz violation in extra dimensions. J. High Energy Phys. 09, 036 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Rizzo, T.G.: Lorentz violation in warped extra dimensions. J. High Energy Phys. 11, 1 (2010)zbMATHGoogle Scholar
  11. 11.
    Greisen, K.: End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    Takeda, M., et al., AGASA Collaboration, Extension of the cosmic-ray energy spectrum beyond the predicted Greisen–Zatsepin–Kuz’min cutoff. Phys. Rev. Lett. 81, 1163 (1998)Google Scholar
  13. 13.
    Krennrich, F., et al.: Cutoff in the TeV energy spectrum of Markarian 421 during strong flares in 2001. Astrophys. J. 560, L45 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Antonov, E.E., et al.: Examination of Lorentz invariance by means of watching of extensive air showers development at super high energies. Pisma Zh. Eksp. Teor. Fiz. 73, 506 (2001)Google Scholar
  15. 15.
    Sato, H.: Extremely high energy and violation of Lorentz invariance. arXiv: astro-ph/0005218
  16. 16.
    Coleman, S.R., Glashow, S.L.: High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Liu, X., Qi, J., Zhang, H.: Cosmological model independent time delay method. JCAP 08, 027 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Preparata, G., Xue, S.-S.: Do we live on a lattice? Fermion masses from the Planck mass. Phys. Lett. B 264, 35 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Cacciatori, S., Preparata, G., Rovelli, S., Spagnolatti, I., Xue, S.-S.: On the ground state of quantum gravity. Phys. Lett. B 427, 254 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Preparata, G., Rovelli, R., Xue, S.-S.: Gas of wormholes: a possible ground state of quantum gravity. Gen. Relativ. Gravitat. 32, 1859 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Xue, S.-S.: Detailed discussions and calculations of quantum Regge calculus of Einstein-Cartan theory. Phys. Rev. D 82, 064039 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Zarei, M., Bavarsad, E., Haghighat, M., Motie, I., Mohammadi, R., Rezaei, Z.: Generation of circular polarization of the CMB. Phys. Rev. D 81, 084035 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Motie, I., Xue, S.-S.: High energy neutrino oscillation at the presence of the Lorentz invariance violation. Int. J. Mod. Phys. A 27, 1250104 (2012)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Jacobson, T., Liberati, S., Mattingly, D.: Lorentz violation at high energy: concepts, phenomena, and astrophysical constraints. Ann. Phys. (N.Y.) 321, 150 (2006)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Liberati, S., Maccione, L.: Lorentz violation: motivation and new constraints. Annu. Rev. Nucl. Part. Sci. 59, 245 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Mattingly, D.: Modern tests of lorentz invariance. Living Rev. Relativ. 8, 5 (2005)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Brandenberger, R.H., Martin, J.: On signatures of short distance physics in the cosmic microwave background. Int. J. Mod. Phys. A 17, 3663 (2002)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Brandenberger, R.H., Martin, J.: Back-reaction and the trans-Planckian problem of inflation reexamined. Phys. Rev. D 71, 023504 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Easther, R., Greene, B.R., Kinney, W.H., Shiu, G.: Inflation as a probe of short distance physics. Phys. Rev. D 64, 103502 (2001)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Starobinsky, A.A.: Robustness of the inflationary perturbation spectrum to trans-Planckian physics. JETP Lett. 73, 371 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Martin, J., Brandenberger, R.H.: Corley–Jacobson dispersion relation and trans-Planckian inflation. Phys. Rev. D 65, 103514 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Martin, J., Brandenberger, R.H.: Dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics. Phys. Rev. D 68, 063513 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Khajeh, E., Khosravi, N., Salehi, H.: Cosmological particle creation in the presence of Lorentz violation. Phys. Lett. B 652, 217 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Mohammadzadeh, H., Farahmand, M., Maleki, M.: Entropy production due to Lorentz invariance violation. Phys. Rev. D 96, 024001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Bertolami, O.: Lorentz invariance and the cosmological constant. Class. Quantum Gravity 14, 2785 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Bertolami, O., Lehnert, R., Potting, R., Ribeiro, A.: Cosmological acceleration, varying couplings, and Lorentz breaking. Phys. Rev. D 69, 083513 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Alberghi, G.L., Casadio, R., Tronconi, A.: Radion induced spontaneous baryogenesis. Mod. Phys. Lett. A 22, 339 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)zbMATHGoogle Scholar
  39. 39.
    Holevo, A.S.: Statistical Structure of Quantum Theory. Springer, Berlin (2001)zbMATHCrossRefGoogle Scholar
  40. 40.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Pairs, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125 (2009)CrossRefGoogle Scholar
  42. 42.
    Cramér, H.: Mathematical Methods of Statistics. Princeton University, Princeton (1946)zbMATHGoogle Scholar
  43. 43.
    Vallisneri, M.: Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Phys. Rev. D 77, 042001 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Aasi, J., et al.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Genoni, M.G., Giorda, P., Paris, M.G.A.: Optimal estimation of entanglement. Phys. Rev. A 78, 032303 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Brida, G., Degiovanni, I.P., Florio, A., Genovese, M., Giorda, P., Meda, A., Paris, M.G.A., Shurupov, A.P.: Optimal estimation of entanglement in optical qubit systems. Phys. Rev. A 83, 052301 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Aspachs, M., Adesso, G., Fuentes, I.: Optimal quantum estimation of the Unruh–Hawking effect. Phys. Rev. Lett. 105, 151301 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Hosler, D., Kok, P.: Parameter estimation using NOON states over a relativistic quantum channel. Phys. Rev. A 88, 052112 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 07195 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Tian, Z., Wang, J., Jing, J., Fan, H.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 07946 (2015)CrossRefGoogle Scholar
  52. 52.
    Yang, Y., Liu, X., Wang, J., Jing, J.: Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary. Quantum Inf. Process. 17, 54 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Liu, X., Tian, Z., Wang, J., Jing, J.: Relativistic motion enhanced quantum estimation of \(\kappa \)-deformation of spacetime. Eur. Phys. J. C 78, 665 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    Wang, J., Tian, Z., Jing, J., Fan, H.: Parameter estimation for an expanding universe. Nucl. Phys. B 892, 390 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, New York (1994)zbMATHGoogle Scholar
  56. 56.
    Ball, J.L., Fuentes-Schuller, I., Schuller, F.P.: Entanglement in an expanding spacetime. Phys. Lett. A 359, 550 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Tian, Zehua, Jing, Jiliang, Dragan, Andrzej: Analog cosmological particle generation in a superconducting circuit. Phys. Rev. D 95, 125003 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    Bernard, C., Duncan, A.: Regularization and renormalization of quantum field theory in curved space-time. Ann. Phys. (N.Y.) 107, 201 (1977)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    Duncan, A.: Explicit dimensional renormalization of quantum field theory in curved space-time. Phys. Rev. D 17, 964 (1978)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Fuentes, I., Mann, R.B., Martín-Martínez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    Martin-Martinez, E., Menicucci, N.C.: Cosmological quantum entanglement. Class. Quantum Grav. 29, 224003 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Moradi, S., Pierini, R., Mancini, S.: Spin-particles entanglement in Robertson–Walker spacetime. Phys. Rev. D 89, 024022 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    Amelino-Camelia, G.: Quantum-spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Braunstein, S.L., Caves, C.M., Milburn, G.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. (N.Y.) 247, 135 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education and Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Department of Physics and Electrical EngineeringLiupanshui Normal UniversityLiupanshuiChina
  3. 3.CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  4. 4.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  5. 5.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  6. 6.Key Laboratory for Research in Galaxies and CosmologyChinese Academy of ScienceHefeiPeople’s Republic of China

Personalised recommendations