Advertisement

Tighter generalized monogamy and polygamy relations for multiqubit systems

  • Zhi-Xiang JinEmail author
  • Shao-Ming FeiEmail author
Article
  • 32 Downloads

Abstract

We present a different kind of monogamy and polygamy relations based on concurrence and concurrence of assistance for multiqubit systems. By relabeling the subsystems associated with different weights, a smaller upper bound of the \(\alpha \)th (\(0\le \alpha \le 2\)) power of concurrence for multiqubit states is obtained. We also present tighter monogamy relations satisfied by the \(\alpha \)th (\(0\le \alpha \le 2\)) power of concurrence for N-qubit pure states under the partition AB and \(C_1 \cdots C_{N-2}\), as well as under the partition \(ABC_1\) and \(C_2\cdots C_{N-2}\). These inequalities give rise to the restrictions on entanglement distribution and the trade-off of entanglement among the subsystems. Similar results are also derived for negativity.

Keywords

Entanglement monogamy Entanglement polygamy Concurrence Convex-roof extended negativity 

Notes

Acknowledgements

This work is supported by the NSF of China under Grant Nos. 11847209; 11675113; Beijing Municipal Commission of Education (KM201810011009); Beijing Natural Science Foundation (Z190005) and the China Postdoctoral Science Foundation funded project.

References

  1. 1.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)CrossRefGoogle Scholar
  13. 13.
    Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf. Process. 17, 222 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multiparty entanglement. J. Phys. A Math. Theor. 44, 295303 (2011)CrossRefGoogle Scholar
  19. 19.
    Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhu, X.N., Fei, S.M.: Generalized monogamy relations of concurrence for \(N\)-qubit systems. Phys. Rev. A 92, 062345 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Jin, Z.X., Fei, S.M., Li-Jost, X.: Generalized entanglement monogamy and polygamy relations for \(N\)-qubit systems. Int. J. Theor. Phys. 58, 1576–1589 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Rungta, P., Buz̆ek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Goura, G., Bandyopadhyayb, S., Sandersc, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Santos, E., Ferrero, M.: Linear entropy and Bell inequalities. Phys. Rev. A 62, 024101 (2000)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, C.J., Gong, Y.X., Zhang, Y.S., Guo, G.C.: Observable estimation of entanglement for arbitrary finite-dimensional mixed states. Phys. Rev. A 78, 042308 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Jin, Z.X., Fei, S.M.: Finer distribution of quantum correlations among multiqubit systems. Quantum Inf. Process. 18, 21 (2019)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Top. 159, 71 (2008)CrossRefGoogle Scholar
  32. 32.
    Kim, J.S., Das, A., Sanders, B.S.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity. Phys. Rev. A 79, 012329 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Horodeki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A. 61, 062313 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Eltschka, C., Tóth, G., Siewert, J.: Partial transposition as a direct link between concurrence and negativity. Phys. Rev. A 91, 032327 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Yany, Y.M., Chen, W., Li, G., Zheng, Z.J.: Generalized monogamy inequalities and upper bounds of negativity for multiqubit systems. Phys. Rev. A 97, 012336 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Yu, C.S., Song, H.S.: Measurable entanglement for tripartite quantum pure states of qubits. Phys. Rev. A 76, 022324 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations