Advertisement

A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security

  • Changbin Lu
  • Fuyou MiaoEmail author
  • Junpeng Hou
  • Wenchao Huang
  • Yan Xiong
Article
  • 38 Downloads

Abstract

Quantum secret sharing (QSS) schemes without entanglement have huge advantages in scalability and are easier to realize as they only require sequential communications of a single quantum system. However, these schemes often come with drawbacks such as exact (nn) structure, security flaws and absences of effective cheating detections. To address these problems, we propose a verifiable framework by utilizing entanglement-free states to construct (tn)-QSS schemes. Our work is the heuristic step toward information-theoretical security in entanglement-free QSS, and it sheds light on how to establish effective verification mechanism against cheating. As a result, the proposed framework has a significant importance in constructing QSS schemes for versatile applications in quantum networks due to its intrinsic scalability, flexibility and information-theoretical security.

Keywords

Quantum cryptography Quantum secret sharing Entanglement-free Information-theoretical security Verification mechanism 

Notes

Acknowledgements

We would like to thank the anonymous reviewers for helpful suggestions. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572454, 61572453, 61520106007 and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150100.

References

  1. 1.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blakley, G.R. et al.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48 (1979)Google Scholar
  3. 3.
    Harn, L.: Group authentication. IEEE Trans. Comput. 62(9), 1893–1898 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: International Workshop on Public Key Cryptography, pp. 31–46. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Tech. 141(5), 307–313 (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Liu, Y.-N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12–24 (2016)CrossRefGoogle Scholar
  7. 7.
    Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994)CrossRefGoogle Scholar
  8. 8.
    Patel, K.: Secure multiparty computation using secret sharing. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 863–866. IEEE, Piscataway (2016)Google Scholar
  9. 9.
    Shor P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Piscataway (1994)Google Scholar
  10. 10.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Dieks, D.G.B.J.: Communication by epr devices. Phys. Lett. A 92(6), 271–272 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Yao, F., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)CrossRefGoogle Scholar
  19. 19.
    Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88(4), 042332 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    He, G.P., Bai, Y.-K.: Quantum secret sharing based on smolin states alone. J. Phys. A: Math. Theor. 41(41), 415304 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Chen, Y.-A., Zhang, A.-N., Zhao, Z., Zhou, X.-Q., Chao-Yang, L., Peng, C.-Z., Yang, T., Pan, J.-W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Changbin, L., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17(11), 310 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Bai, C.-M., Li, Z.-H., Li, Y.-M.: Sequential quantum secret sharing using a single qudit. Commun. Theory Phys. 69(5), 513 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98(2), 028901 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Lin, S., Guo, G.-D., Yong-Zhen, X., Sun, Y., Liu, X.-F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Massey, J. L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279. Citeseer (1993)Google Scholar
  33. 33.
    Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mignotte, M.: How to share a secret. In: Workshop on Cryptography, pp. 371–375. Springer, Heidelberg (1982)Google Scholar
  35. 35.
    Thas, K.: The geometry of generalized pauli operators of n-qudit hilbert space, and an application to mubs. Europhys. Lett. 86(6), 60005 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Ioannis Kogias, Y., Xiang, Q.H., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Deng, F.-G., Long, G.L., Zhou, H.-Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78(1), 012344 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88(4), 042313 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Changbin, L., Miao, F., Meng, K., Yue, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494–4497 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Godfrin, C., Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., Balestro, F.: Generalized ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4(1), 53 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    Giordani, T., Polino, E., Emiliani, S., Suprano, A., Innocenti, L., Majury, H., Marrucci, L., Paternostro, M., Ferraro, A., Spagnolo, N., et al.: Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122(2), 020503 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Changbin Lu
    • 1
  • Fuyou Miao
    • 1
    Email author
  • Junpeng Hou
    • 2
  • Wenchao Huang
    • 1
  • Yan Xiong
    • 1
  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of PhysicsThe University of Texas at DallasRichardsonUSA

Personalised recommendations