Advertisement

Separability criteria based on Bloch representation of density matrices

  • Hui ZhaoEmail author
  • Mei-Ming Zhang
  • NaiHuan Jing
  • Zhi-Xi Wang
Article
  • 38 Downloads

Abstract

We study separability criteria in multipartite quantum systems of arbitrary dimensions by using the Bloch representation of density matrices. We first derive the norms of the correlation tensors and obtain the necessary conditions for separability under partition of tripartite and four-partite quantum states. Moreover, based on the norms of the correlation tensors, we obtain the separability criteria by matrix method. Using detailed examples, our results are seen to be able to detect more entangled states than previous studies. Finally, necessary conditions of separability for multipartite systems are given under arbitrary partition.

Keywords

Separability Bloch vector Entanglement 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11101017, 11531004, 11726016 and 11675113, and Simons Foundation under Grant No. 523868, Key Project of Beijing Municipal Commission of Education (KZ201810028042).

References

  1. 1.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gisin, N., Ribordy, G., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Schauer, S., Huber, M., Hiesmayr, B.C.: Experimentally feasible security check for n-qubit quantum secret sharing. Phys. Rev. A 82, 062311 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Wu, S.J., Chen, X.M., Zhang, Y.D.: A necessary and sufficient criterion for multipartite separable states. Phys. Lett. A 275, 244 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. 69, 448 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hassan, A.S.M., Joag, P.S.: An experimentally accessible geometric measure for entanglement in N-qudit pure states. Phys. Rev. A 80, 042302 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fei, S.M., Wang, Z.X., Zhao, H.: A note on entanglement of formation and generalized concurrence. Phys. Lett. A 329, 414 (2004)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Xie, C., Zhao, H., Wang, Z.X.: Separability of density matrices of graphs for multipartite systems. Electron. J. Comb. 20, 21 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zhao, H., Zhang, X.H., Fei, S.M., Wang, Z.X.: Characterization of four-qubit states via bell inequalities. Chin. Sci. Bull. 58, 2334 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhao, H., Fei, S.M., Fan, J., Wang, Z.X.: Inequalities detecting entanglement for arbitrary bipartite systems. Int. J. Quantum Inform. 12, 1450013 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yu, X.Y., Zhao, H.: Separability of tripartite quantum states with strong positive partial transposes. Int. J. Theor. Phys. 54, 292 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhao, H., Guo, S., Jing, N.H., Fei, S.M.: Construction of bound entangled states based on permutation operators. Quantum Inf. Process. 15, 1529 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)ADSCrossRefGoogle Scholar
  17. 17.
    Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Jakobczyk, L., Siennicki, M.: Geometry of bloch vectors in two-qubit system. Phys. Lett. A 286, 383 (2001)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, M., Wang, Z., Wang, J., Shen, S., Fei, S.M.: The norms of Bloch vectors and classification of four-qudits quantum states. Europhys. Lett. A 125, 20006 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    de Vicente, J.I.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A 41, 065309 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the bloch representation of density matrices. Quantum Inf. Comput. 8, 0773 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Li, M., Wang, J., Fei, S.M., Li-Jost, X.Q.: Quantum separability criteria for arbitrary dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Li, M., Jia, L., Wang, J., Shen, S., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Yu, C.S., Song, H.S.: Separability criterion of tripartite qubit systems. Phys. Rev. A 72, 022333 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Shen, S.Q., Yu, J., Li, M., Fei, S.M.: Improved separability criteria based on bloch representation of density matrices. Sci. Rep. 6, 28850 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Applied SciencesBeijing University of TechnologyBeijingChina
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingChina

Personalised recommendations