Quantum speed limit time for correlated quantum channel

  • N. Awasthi
  • S. HaseliEmail author
  • U. C. Johri
  • S. Salimi
  • H. Dolatkhah
  • A. S. Khorashad


Memory effects play a fundamental role in the dynamics of open quantum systems. There exist two different views on memory for quantum noises. In the first view, the quantum channel has memory when there exist correlations between successive uses of the channels on a sequence of quantum systems. These types of channels are also known as correlated quantum channels. In the second view, memory effects result from correlations which are created during the quantum evolution. In this work, we will consider the first view and study the quantum speed limit time for a correlated quantum channel. Quantum speed limit time is the bound on the minimal time which is needed for a quantum system to evolve from an initial state to desired states. The quantum evolution is fast if the quantum speed limit time is short. In this work, we will study the quantum speed limit time for some correlated unital and correlated non-unital channels. As an example for unital channels, we choose correlated dephasing colored noise. We also consider the correlated amplitude damping and correlated squeezed generalized amplitude damping channels as the examples for non-unital channels. It will be shown that the quantum speed limit time for correlated pure dephasing colored noise is increased by increasing correlation strength, while for correlated amplitude damping and correlated squeezed generalized amplitude damping channels quantum speed limit time is decreased by increasing correlation strength.


Open quantum systems Quantum speed limit time Correlated quantum channel 



The authors would like to thank Prof. Masashi Ban for his valuable comments.


  1. 1.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University, Press (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific, Singapore (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., Sudarshan, E.: Properties of quantum Markovian master equations. Rep. Math. Phys. 13, 149 (1978)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    He, G., Zhang, J., Zhu, J., Zeng, G.: Continuous-variable quantum teleportation in bosonic structured environments. Phys. Rev. A 84, 034305 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1991)zbMATHGoogle Scholar
  7. 7.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Cakmak, B., Aguilar, G.H., Walborn, S.P., Souto Ribeiro, P.H.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90(5), 052118 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Haseli, S., Salimi, S., Khorashad, A.S.: A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf. Process. 14, 3581 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Haseli, S., Salimi, S., Khorashad, A.S., Adabi, F.: The role of the total entropy production in the dynamics of open quantum systems in detection of non-Markovianity. Int. J. Theor. Phys. 55, 4089 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Farías, O.J., Walborn, S.P., Ribeiro, P.H.S., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  15. 15.
    Thorwart, M., Eckel, J., Reina, J., Nalbach, P., Weiss, S.: Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons. Chem. Phys. Lett. 478, 234 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Vasile, R., Olivares, S., Paris, M.A., Maniscalco, S.: Continuous-variable quantum key distribution in non-Markovian channels. Phys. Rev. A 83, 042321 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Hwang, B., Goan, H.-S.: Optimal control for non-Markovian open quantum systems. Phys. Rev. A 85, 032321 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Kretschmann, D., Werner, R.F.: Quantum channels with memory. Phys. Rev. A 72, 062323 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Addis, C., Karpat, G., Macchiavello, C., Maniscalco, S.: Dynamical memory effects in correlated quantum channels. Phys. Rev. A 94, 032121 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf. Process. 12, 83–95 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Guo, Y.-N., Fang, M.-F., Wang, G.-Y., Zeng, K.: Generation and protection of steady-state quantum correlations due to quantum channels with memory. Quantum Inf. Process. 15, 5129 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Karpat, G.: Entropic uncertainty relation under correlated dephasing channels. Can. J. Phys. 96(7), 700–704 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Guo, Y., Fang, M., Zeng, K.: Entropic uncertainty relation under quantum channels with memory (2017). arXiv:1710.06344
  28. 28.
    Mandelstam, L., Tamm, I.G.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. 9, 249 (1945)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica (Amsterdam) 120D, 188 (1998)ADSGoogle Scholar
  30. 30.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)CrossRefGoogle Scholar
  33. 33.
    Deffner, S., Lutz, E.: Quantum speed Limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Han, W., Xia, Y., Cao, J., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)CrossRefGoogle Scholar
  36. 36.
    Xu, Z.Y., Zhu, S.Q.: Quantum speed limit of a photon under non-Markovian dynamics. Chin. Phys. Lett. 31, 020301 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Mondal, D., Pati, A.K.: Quantum speed limit for mixed states using an experimentally realizable metric. Phys. Lett. A 380, 1395 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Meng, X., Wu, C., Guo, H.: Minimal evolution time and quantum speed limit of non-Markovian open systems. Sci. Rep. 5, 16357 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Mirkin, N., Toscano, F., Wisniacki, D.A.: Quantum-speed-limit bounds in an open quantum evolution. Phys. Rev. A 94, 052125 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Campaioli, F., Pollock, F.A., Modi, K.: Tight, robust, and feasible quantum speed limits for open dynamics. Quantum 3, 168 (2019)CrossRefGoogle Scholar
  43. 43.
    Uzdin, R., Kosloff, R.: Speed limits in Liouville space for open quantum systems. EPL 115, 40003 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Audenaert, K.M.R.: Comparisons between quantum state distinguishability measures. Quantum Inf. Comput. 14, 31–38 (2014)MathSciNetGoogle Scholar
  45. 45.
    Liu, C., Xu, Z.-Y., Zhu, S.: Quantum-speed-limit time for multiqubit open systems. Phys. Rev. A 91, 022102 (2015) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Anandan, J., Aharonovand, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Steele, J.M.: The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. The Mathematical Association of America, Washington (2004). ISBN 978-0521546775zbMATHCrossRefGoogle Scholar
  48. 48.
    Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  49. 49.
    Simon, B.: Trace Ideals and Their Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  50. 50.
    Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Awasthi, N., Johri, U.C.: Effect of correlated noise channels on quantum speed limit (2018). arXiv:1807.07782
  52. 52.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th anniversary edn. Cambridge University Press, New York (2010)zbMATHCrossRefGoogle Scholar
  53. 53.
    Imre, S., Gyongyosi, L.: Advanced Quantum Communications (An Engineering Approach). Wiley, New York (2012)zbMATHCrossRefGoogle Scholar
  54. 54.
    King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Daffer, S., Wodkiewicz, K., Cresser, J.D., Mclver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Fujiwara, A.: Estimation of a generalized amplitude-damping channel. Phys. Rev. A 70, 012317 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Daffer, S., Wodkiewicz, K., McIver, J.K.: Quantum Markov channels for qubits. Phys. Rev. A 67, 062312 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A Math. Theor. 40, 13735–13754 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Wilson, D., Lee, J., Kim, M.S.: Entanglement of a two-mode squeezed state in a phase-sensitive gaussian environment. J. Mod. Opt. 50, 1809–1815 (2003)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816–834 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Jeong, Y., Shin, H.: Quantum correlation in squeezed generalized amplitude damping channels with memory. Sci. Rep. 9, 4035 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsDIT University MussoorieMakka WalaIndia
  2. 2.Faculty of PhysicsUrmia University of TechnologyUrmiaIran
  3. 3.College of Basic Sciences and HumanitiesG.B. Pant University Of Agriculture and TechnologyPantnagarIndia
  4. 4.Department of PhysicsUniversity of KurdistanSanandajIran

Personalised recommendations